Biological Magnetic Resonance

Biological Magnetic Resonance
Author: Lawrence Berliner
Publsiher: Springer Science & Business Media
Total Pages: 354
Release: 2013-03-09
Genre: Science
ISBN: 9781461565345

Download Biological Magnetic Resonance Book in PDF, Epub and Kindle

Biological magnetic resonance (NMR and EPR) is a rapidly expanding area of research with much activity in most universities and research institutions. International conferences are held biennially with an increasing number of participants. With the introduction of sophisticated and continuously im proving instrumentation, biological magnetic resonance is approaching the state of a common physical method in biochemical, biomedical, and bio logical research. The lack of monograpbs on the subject had been con spicuous for a long time. This gap started to close only recently. However, because of the rapid expansion and intensive research, many texts are dated by the time of their appearance. Therefore we have undertaken the editing of a series that is intended to provide the practicing chemist, biochemist, or biologist with the advances and progress in selected contemporary topics. In seeking to make the series as authoritative as possible, we have invited authors who have not only made significant contributions but who are also currently active in their fields. We hope that their expertise as well as their first hand experience as reflected in the chapters of this volume will be of benefit to the reader, inter alia, in planning his own experiments and in critically evaluating the current literature.

Spin Labeling

Spin Labeling
Author: Lawrence J. Berliner
Publsiher: Academic Press
Total Pages: 609
Release: 2013-10-22
Genre: Science
ISBN: 9781483216409

Download Spin Labeling Book in PDF, Epub and Kindle

Spin Labeling: Theory and Applications covers the background, theory, and applications of spin labeling. The book starts by providing an introduction about electron spin resonance in biology and a reporter group technique of spin labelling. The text then describes the principles and theories of magnetic resonance; the theory of slow tumbling ESR spectra for nitroxides; and the influence of electron-electron interactions on the appearance of the electron resonance spectrum. The chemistry of spin labels; the molecular structures of nitroxides; the instrumental aspects of spin labeling; as well as the use of spin labels for studying the structure and function of enzymes are also considered. The book further discusses spin-label-induced nuclear magnetic resonance relaxation studies of enzymes; anisotropic motion in liquid crystalline structures; and the use of oriented lipid systems as model membranes. The text also looks into the application of lipid spin labels in biological membranes as well as the molecular motion in biological membranes. Chemists, molecular biologists, chemical physicists, people involved in the study of physical spectrometry, and graduate students taking related courses will find the book invaluable.

Spin Labeling

Spin Labeling
Author: Lawrence J. Berliner,Jacques Reuben
Publsiher: Springer Science & Business Media
Total Pages: 662
Release: 2012-12-06
Genre: Science
ISBN: 9781461307433

Download Spin Labeling Book in PDF, Epub and Kindle

We present this special topics volume on an area which has not received thorough coverage for over 12 years. Spin Labeling: Theory and Applications represents a complete update on new theoretical aspects and applications of the spin-label method. In the "line-shape theory" sections, we are especially pleased to include an IBM-compatible diskette supplied by David Schneider and Jack Freed which contains fast, accurate, ready-to-use software for slow-motion simulations. Barney Bales discusses inhomogeneous broadening phenomena in detail. Several developments in techniques and interpretation in saturation transfer spectroscopy have appeared since the publica tion of Spin Labeling II: Theory and Applications (L. J. Berliner, ed., Academic Press, 1979). We have included an up-to-date chapter on spin-label applications by M. A. Hemminga and P. A. de Jager. By incorporating 15N and deuterium into nitroxide spin labels, several unique advantages are derived in line-shape analysis. Albert Beth and Bruce Robinson have contributed a detailed chapter on the analysis of these labels in the slow-motion regime while Jane Park and Wolfgang Trommer present the advantages for specific biochemical examples in our "applications" section. Derek Marsh's contri bution on spin-label spectral analysis may be regarded as a summary chapter which touches on several of the detailed spectral analysis methods described in the earlier chapters.

Spin Labeling

Spin Labeling
Author: Lawrence Berliner
Publsiher: Springer Science & Business Media
Total Pages: 435
Release: 1998-08-31
Genre: Science
ISBN: 9780306456442

Download Spin Labeling Book in PDF, Epub and Kindle

We present here the second issue devoted entirely to the spin-labeling technique as part of Biological Magnetic Resonance. Volume 14 commemorates a modifi- tion in our editorial policy with the retirement of my esteemed coeditor, Jacques Reuben. From thisjuncture into the future, each issue will focus on some special topic in magnetic resonance. Each volume will be organized in most cases by guest editors, for example forthcoming issues will address the following topics: in vivo magnetic resonance (P. Robitaille and L. J. Berliner, eds. ) Modern techniques in proton NMR ofproteins (R. Krishna and L. J. Berliner, eds. ) Instrumental techniques of EPR (C. Bender and L. J. Berliner, eds. ) Thecurrent volume, Spin Labeling: The NextMillennium, presents an excellent collection of techniques and applications that evolved during the past decade since the last volume, volume 8 (1989). Someobvious omissions, such as multiquantum EPR and very high-frequency FT-ESR were unfortunately not possible for this volume. Perhaps they will appear in Spin Labeling: 2001. Lastly it is a pleasure to honor two scientists whose contributions were both pioneering and pivotal to the spin label technique: Professor Eduard G. Rozantsev (Moscow), whose synthetic feats in nitroxyl chemistry set the broad stage for a versatile catalog of labels; and Professor Harden M. McConnell, last year's Int- national ESR (EPR) Society Gold Medalist, who conceived and developed the spin label technique to address many biological problems (proteins, enzymes, m- branes, cells, immune response, etc. ). Lawrence J.

Introduction to Functional Magnetic Resonance Imaging

Introduction to Functional Magnetic Resonance Imaging
Author: Richard B. Buxton
Publsiher: Cambridge University Press
Total Pages: 479
Release: 2009-08-27
Genre: Medical
ISBN: 9780521899956

Download Introduction to Functional Magnetic Resonance Imaging Book in PDF, Epub and Kindle

This is the second edition of a useful introductory book on a technique that has revolutionized neuroscience, specifically cognitive neuroscience. Functional magnetic resonance imaging (fMRI) has now become the standard tool for studying the brain systems involved in cognitive and emotional processing. It has also been a major factor in the consilience of the fields of neurobiology, cognitive psychology, social psychology, radiology, physics, mathematics, engineering, and even philosophy. Written and edited by a clinician-scientist in the field, this book remains an excellent user's guide to t

Multi parametric perfusion MRI by arterial spin labeling

Multi parametric perfusion MRI by arterial spin labeling
Author: Long-Biao Cui,Guolin Ma,Danny J. J. Wang
Publsiher: Frontiers Media SA
Total Pages: 157
Release: 2023-02-13
Genre: Science
ISBN: 9782832514504

Download Multi parametric perfusion MRI by arterial spin labeling Book in PDF, Epub and Kindle

Spin Labeling

Spin Labeling
Author: Lawrence J. Berliner
Publsiher: Springer Science & Business Media
Total Pages: 435
Release: 2006-01-14
Genre: Science
ISBN: 9780306470721

Download Spin Labeling Book in PDF, Epub and Kindle

We present here the second issue devoted entirely to the spin-labeling technique as part of Biological Magnetic Resonance. Volume 14 commemorates a modifi- tion in our editorial policy with the retirement of my esteemed coeditor, Jacques Reuben. From thisjuncture into the future, each issue will focus on some special topic in magnetic resonance. Each volume will be organized in most cases by guest editors, for example forthcoming issues will address the following topics: in vivo magnetic resonance (P. Robitaille and L. J. Berliner, eds. ) Modern techniques in proton NMR ofproteins (R. Krishna and L. J. Berliner, eds. ) Instrumental techniques of EPR (C. Bender and L. J. Berliner, eds. ) Thecurrent volume, Spin Labeling: The NextMillennium, presents an excellent collection of techniques and applications that evolved during the past decade since the last volume, volume 8 (1989). Someobvious omissions, such as multiquantum EPR and very high-frequency FT-ESR were unfortunately not possible for this volume. Perhaps they will appear in Spin Labeling: 2001. Lastly it is a pleasure to honor two scientists whose contributions were both pioneering and pivotal to the spin label technique: Professor Eduard G. Rozantsev (Moscow), whose synthetic feats in nitroxyl chemistry set the broad stage for a versatile catalog of labels; and Professor Harden M. McConnell, last year's Int- national ESR (EPR) Society Gold Medalist, who conceived and developed the spin label technique to address many biological problems (proteins, enzymes, m- branes, cells, immune response, etc. ). Lawrence J.

Preclinical MRI of the Kidney

Preclinical MRI of the Kidney
Author: Andreas Pohlmann,Thoralf Niendorf
Publsiher: Humana
Total Pages: 0
Release: 2022-02-19
Genre: Electronic Book
ISBN: 1071609807

Download Preclinical MRI of the Kidney Book in PDF, Epub and Kindle

Preface... Table of Contents... Contributing Authors... Part I Introduction 1. Recommendations for Preclinical Renal MRI: A Comprehensive Open-Access Protocol Collection to Improve Training, Reproducibility, and Comparability of Studies Andreas Pohlmann, Susan J. Back, Andrea Fekete, Iris Friedli, Stefanie Hectors, Neil Peter Jerome, Min-Chi Ku, Dario Livio Longo, Martin Meier, Jason M. Millward, João S. Periquito, Erdmann Seeliger, Suraj D. Serai, Sonia Waiczies, Steven Sourbron, Christoffer Laustsen, and Thoralf Niendorf Part II Animal Models, Preparation, Monitoring, and Physiological Interventions 2. Animal Models of Renal Pathophysiology and Disease Adam Hosszu, Tamas Kaucsar, Erdmann Seeliger, and Andrea Fekete 3. Preparation and Monitoring of Small Animals in Renal MRI Tamas Kaucsar, Adam Hosszu, Erdmann Seeliger, Henning M. Reimann, and Andrea Fekete 4. Reversible (Patho-)Physiologically Relevant Test Interventions: Rationale and Examples Kathleen Cantow, Mechthild Ladwig-Wiegard, Bert Flemming, Andrea Fekete, Adam Hosszu, Erdmann Seeliger 5. Preparation of Ex Vivo Rodent Phantoms for Developing, Testing, and Training MR Imaging of the Kidney and Other Organs Jason M. Millward, João S. Periquito, Paula Ramos Delgado, Christian Prinz, Thoralf Niendorf, and Sonia Waiczies Part III Basic Concepts of Measurement Techniques 6. Quantitative Assessment of Renal Perfusion and Oxygenation by Invasive Probes: Basic Concepts Kathleen Cantow, Roger G. Evans, Dirk Grosenick, Thomas Gladytz, Thoralf Niendorf, Bert Flemming, and Erdmann Seeliger 7. Ultrasound and Photoacoustic Imaging of the Kidney: Basic Concepts and Protocols Sandra Meyer, Dieter Fuchs, and Martin Meier 8. Hardware Considerations for Preclinical Magnetic Resonance of the Kidney Paula Ramos Delgado, Ekkehard Küstermann, André Kühne, Jason M. Millward, Thoralf Niendorf, Andreas Pohlmann, and Martin Meier 9. MRI Mapping of Renal T1: Basic Concept Stefanie Hectors, Sabrina Doblas, Philippe Garteiser, Gwenaël Pagé, Bernard E. Van Beers, John C. Waterton, and Octavia Bane 10. MRI Mapping of the Blood Oxygenation Sensitive Parameter T2* in the Kidney: Basic Concept Lu-Ping Li, Bradley Hack, Erdmann Seeliger, and Pottumarthi V. Prasad 11. Renal Diffusion Weighted Imaging (DWI) for Apparent Diffusion Coefficient (ADC), Intra Voxel Incoherent Motion (IVIM), and Diffusion Tensor Imaging (DTI): Basic Concept Neil Peter Jerome, Anna Caroli, and Alexandra Ljimani 12. Dynamic Contrast Enhancement (DCE)-MRI Derived Renal Perfusion and Filtration: Basic Concepts Michael Pedersen, Pietro Irrera, Walter Dastrù, Frank G. Zöllner, Kevin M. Bennett, Scott C. Beeman, G. Larry Bretthorst, Joel R. Garbow, and Dario Livio Longo 13. Non-Invasive Renal Perfusion Measurement Using Arterial Spin Labelling (ASL) MRI: Basic Concept Min-Chi Ku, María A. Fernández-Seara, Frank Kober, and Thoralf Niendorf 14. Renal pH Imaging Using Chemical Exchange Saturation Transfer (CEST)-MRI: Basic Concepts Dario Livio Longo, Pietro Irrera, Lorena Consolino, Phillip Zhe Sun, and Michael T. McMahon 15. Sodium (23Na) MRI of the Kidney: Basic Concept James T. Grist, Esben Søvsø Hansen, Frank G. Zöllner, and Christoffer Laustsen 16. Hyperpolarized Carbon (13C) MRI of the Kidneys: Basic Concepts Cornelius von Morze, Galen D. Reed, Zhen J. Wang, Michael A. Ohliger, and Christoffer Laustsen 17. Functional Imaging Using Fluorine (19F) MR Methods: Basic Concepts Sonia Waiczies, Christian Prinz, Ludger Starke, Jason M. Millward, Paula Ramos Delgado, Jens Rosenberg, Marc Nazaré, Helmar Waiczies, Andreas Pohlmann, and Thoralf Niendorf 18. MR Elastography of the Abdomen: Basic Concepts Suraj D. Serai and Meng Yin Part IV Experimental Protocols 19. Monitoring Renal H