Spin orbit Coupling Effects in Two Dimensional Electron and Hole Systems

Spin orbit Coupling Effects in Two Dimensional Electron and Hole Systems
Author: Roland Winkler
Publsiher: Springer Science & Business Media
Total Pages: 244
Release: 2003-10-10
Genre: Technology & Engineering
ISBN: 3540011870

Download Spin orbit Coupling Effects in Two Dimensional Electron and Hole Systems Book in PDF, Epub and Kindle

The first part provides a general introduction to the electronic structure of quasi-two-dimensional systems with a particular focus on group-theoretical methods. The main part of the monograph is devoted to spin-orbit coupling phenomena at zero and nonzero magnetic fields. Throughout the book, the main focus is on a thorough discussion of the physical ideas and a detailed interpretation of the results. Accurate numerical calculations are complemented by simple and transparent analytical models that capture the important physics.

Comprehensive Semiconductor Science and Technology

Comprehensive Semiconductor Science and Technology
Author: Anonim
Publsiher: Newnes
Total Pages: 3572
Release: 2011-01-28
Genre: Science
ISBN: 9780080932286

Download Comprehensive Semiconductor Science and Technology Book in PDF, Epub and Kindle

Semiconductors are at the heart of modern living. Almost everything we do, be it work, travel, communication, or entertainment, all depend on some feature of semiconductor technology. Comprehensive Semiconductor Science and Technology, Six Volume Set captures the breadth of this important field, and presents it in a single source to the large audience who study, make, and exploit semiconductors. Previous attempts at this achievement have been abbreviated, and have omitted important topics. Written and Edited by a truly international team of experts, this work delivers an objective yet cohesive global review of the semiconductor world. The work is divided into three sections. The first section is concerned with the fundamental physics of semiconductors, showing how the electronic features and the lattice dynamics change drastically when systems vary from bulk to a low-dimensional structure and further to a nanometer size. Throughout this section there is an emphasis on the full understanding of the underlying physics. The second section deals largely with the transformation of the conceptual framework of solid state physics into devices and systems which require the growth of extremely high purity, nearly defect-free bulk and epitaxial materials. The last section is devoted to exploitation of the knowledge described in the previous sections to highlight the spectrum of devices we see all around us. Provides a comprehensive global picture of the semiconductor world Each of the work's three sections presents a complete description of one aspect of the whole Written and Edited by a truly international team of experts

Functional Materials

Functional Materials
Author: Dipti Ranjan Sahu
Publsiher: BoD – Books on Demand
Total Pages: 126
Release: 2019-10-09
Genre: Technology & Engineering
ISBN: 9781789840575

Download Functional Materials Book in PDF, Epub and Kindle

Functional materials are important materials for any technological needs and the forefront of materials research. Development of functional materials and their effective applications in the frontier fields of cross-multidisciplinary research programs is unique. This book presents an overview of different types of functional materials, including synthesis, characterization and application, and up-to-date treatment of functional materials, which are needed for structural, magnetic, polymeric, electromagnetic, etc. applications. New topics based on polymeric materials and spintronic materials are given for possible applications. The chapters of the book provide a key understanding of functional materials. It is suitable for undergraduates, graduates, and professionals, including engineers, scientists, researchers, technicians, and technology managers.

Spintronics Handbook Second Edition Spin Transport and Magnetism

Spintronics Handbook  Second Edition  Spin Transport and Magnetism
Author: Evgeny Y. Tsymbal,Igor Žutić
Publsiher: CRC Press
Total Pages: 530
Release: 2019-05-20
Genre: Science
ISBN: 9780429784378

Download Spintronics Handbook Second Edition Spin Transport and Magnetism Book in PDF, Epub and Kindle

The second edition offers an update on the single most comprehensive survey of the two intertwined fields of spintronics and magnetism, covering the diverse array of materials and structures, including silicon, organic semiconductors, carbon nanotubes, graphene, and engineered nanostructures. It focuses on seminal pioneering work, together with the latest in cutting-edge advances, notably extended discussion of two-dimensional materials beyond graphene, topological insulators, skyrmions, and molecular spintronics. The main sections cover physical phenomena, spin-dependent tunneling, control of spin and magnetism in semiconductors, and spin-based applications.

Semiconductor Spintronics

Semiconductor Spintronics
Author: Thomas Schäpers
Publsiher: Walter de Gruyter GmbH & Co KG
Total Pages: 428
Release: 2021-05-10
Genre: Science
ISBN: 9783110639001

Download Semiconductor Spintronics Book in PDF, Epub and Kindle

This revised and expanded edition of the first comprehensive introduction to the rapidly-evolving field of spintronics covers ferromagnetism in nano-electrodes, spin injection, spin manipulation, and the practical use of these effects in next-generation electronics. Moreover, the book now also includes spin-based optics, topological materials and insulators, and the quantum spin Hall effect.

Control of Magnetotransport in Quantum Billiards

Control of Magnetotransport in Quantum Billiards
Author: Christian V. Morfonios,Peter Schmelcher
Publsiher: Springer
Total Pages: 252
Release: 2016-11-16
Genre: Technology & Engineering
ISBN: 9783319398334

Download Control of Magnetotransport in Quantum Billiards Book in PDF, Epub and Kindle

In this book the coherent quantum transport of electrons through two-dimensional mesoscopic structures is explored in dependence of the interplay between the confining geometry and the impact of applied magnetic fields, aiming at conductance controllability. After a top-down, insightful presentation of the elements of mesoscopic devices and transport theory, a computational technique which treats multiterminal structures of arbitrary geometry and topology is developed. The method relies on the modular assembly of the electronic propagators of subsystems which are inter- or intra-connected providing large flexibility in system setups combined with high computational efficiency. Conductance control is first demonstrated for elongated quantum billiards and arrays thereof where a weak magnetic field tunes the current by phase modulation of interfering lead-coupled states geometrically separated from confined states. Soft-wall potentials are then employed for efficient and robust conductance switching by isolating energy persistent, collimated or magnetically deflected electron paths from Fano resonances. In a multiterminal configuration, the guiding and focusing property of curved boundary sections enables magnetically controlled directional transport with input electron waves flowing exclusively to selected outputs. Together with a comprehensive analysis of characteristic transport features and spatial distributions of scattering states, the results demonstrate the geometrically assisted design of magnetoconductance control elements in the linear response regime.

Topological Insulators

Topological Insulators
Author: Gregory Tkachov
Publsiher: CRC Press
Total Pages: 182
Release: 2015-10-14
Genre: Science
ISBN: 9789814613262

Download Topological Insulators Book in PDF, Epub and Kindle

This book is the result of dynamic developments that have occurred in condensed matter physics after the recent discovery of a new class of electronic materials: topological insulators. A topological insulator is a material that behaves as a band insulator in its interior, while acting as a metallic conductor at its surface. The surface current carriers in these systems have Dirac-like nature and are protected by an intrinsic topological order, which is of great interest for both fundamental research and emerging technologies, especially in the fields of electronics, spintronics, and quantum information. The realization of the application potential of topological insulators requires a comprehensive and deep understanding of transport processes in these novel materials. This book explores the origin of the protected Dirac-like states in topological insulators and gives an insight into some of their representative transport properties. These include the quantum spin–Hall effect, nonlocal edge transport, backscattering of helical edge and surface states, weak antilocalization, unconventional triplet p-wave superconductivity, topological bound states, and emergent Majorana fermions in Josephson junctions as well as superconducting Klein tunneling.

Spectroscopy of Complex Oxide Interfaces

Spectroscopy of Complex Oxide Interfaces
Author: Claudia Cancellieri,Vladimir N. Strocov
Publsiher: Springer
Total Pages: 320
Release: 2018-04-09
Genre: Technology & Engineering
ISBN: 9783319749891

Download Spectroscopy of Complex Oxide Interfaces Book in PDF, Epub and Kindle

This book summarizes the most recent and compelling experimental results for complex oxide interfaces. The results of this book were obtained with the cutting-edge photoemission technique at highest energy resolution. Due to their fascinating properties for new-generation electronic devices and the challenge of investigating buried regions, the book chiefly focuses on complex oxide interfaces. The crucial feature of exploring buried interfaces is the use of soft X-ray angle-resolved photoemission spectroscopy (ARPES) operating on the energy range of a few hundred eV to increase the photoelectron mean free path, enabling the photons to penetrate through the top layers – in contrast to conventional ultraviolet (UV)-ARPES techniques. The results presented here, achieved by different research groups around the world, are summarized in a clearly structured way and discussed in comparison with other photoemission spectroscopy techniques and other oxide materials. They are complemented and supported by the most recent theoretical calculations as well as results of complementary experimental techniques including electron transport and inelastic resonant X-ray scattering.