Stabilization Optimal and Robust Control

Stabilization  Optimal and Robust Control
Author: Aziz Belmiloudi
Publsiher: Springer Science & Business Media
Total Pages: 509
Release: 2008-08-17
Genre: Technology & Engineering
ISBN: 9781848003446

Download Stabilization Optimal and Robust Control Book in PDF, Epub and Kindle

Stabilization, Optimal and Robust Control develops robust control of infinite-dimensional dynamical systems derived from time-dependent coupled PDEs associated with boundary-value problems. Rigorous analysis takes into account nonlinear system dynamics, evolutionary and coupled PDE behaviour and the selection of function spaces in terms of solvability and model quality. Mathematical foundations are provided so that the book remains accessible to the non-control-specialist. Following chapters giving a general view of convex analysis and optimization and robust and optimal control, problems arising in fluid mechanical, biological and materials scientific systems are laid out in detail. The combination of mathematical fundamentals with application of current interest will make this book of much interest to researchers and graduate students looking at complex problems in mathematics, physics and biology as well as to control theorists.

Optimal and Robust Control

Optimal and Robust Control
Author: Luigi Fortuna,Mattia Frasca
Publsiher: CRC Press
Total Pages: 253
Release: 2012-02-02
Genre: Technology & Engineering
ISBN: 9781466501911

Download Optimal and Robust Control Book in PDF, Epub and Kindle

While there are many books on advanced control for specialists, there are few that present these topics for nonspecialists. Assuming only a basic knowledge of automatic control and signals and systems, Optimal and Robust Control: Advanced Topics with MATLAB® offers a straightforward, self-contained handbook of advanced topics and tools in automatic control. Techniques for Controlling System Performance in the Presence of Uncertainty The book deals with advanced automatic control techniques, paying particular attention to robustness—the ability to guarantee stability in the presence of uncertainty. It explains advanced techniques for handling uncertainty and optimizing the control loop. It also details analytical strategies for obtaining reduced order models. The authors then propose using the Linear Matrix Inequalities (LMI) technique as a unifying tool to solve many types of advanced control problems. Topics covered include: LQR and H-infinity approaches Kalman and singular value decomposition Open-loop balancing and reduced order models Closed-loop balancing Passive systems and bounded-real systems Criteria for stability control This easy-to-read text presents the essential theoretical background and provides numerous examples and MATLAB exercises to help the reader efficiently acquire new skills. Written for electrical, electronic, computer science, space, and automation engineers interested in automatic control, this book can also be used for self-study or for a one-semester course in robust control.

Robust and Optimal Control

Robust and Optimal Control
Author: Mi-Ching Tsai,Da-Wei Gu
Publsiher: Springer Science & Business Media
Total Pages: 356
Release: 2014-01-07
Genre: Technology & Engineering
ISBN: 9781447162575

Download Robust and Optimal Control Book in PDF, Epub and Kindle

A Two-port Framework for Robust and Optimal Control introduces an alternative approach to robust and optimal controller synthesis procedures for linear, time-invariant systems, based on the two-port system widespread in electrical engineering. The novel use of the two-port system in this context allows straightforward engineering-oriented solution-finding procedures to be developed, requiring no mathematics beyond linear algebra. A chain-scattering description provides a unified framework for constructing the stabilizing controller set and for synthesizing H2 optimal and H∞ sub-optimal controllers. Simple yet illustrative examples explain each step. A Two-port Framework for Robust and Optimal Control features: · a hands-on, tutorial-style presentation giving the reader the opportunity to repeat the designs presented and easily to modify them for their own programs; · an abundance of examples illustrating the most important steps in robust and optimal design; and · end-of-chapter exercises. To further demonstrate the proposed approaches, in the last chapter an application case study is presented which demonstrates the use of the framework in a real-world control system design and helps the reader quickly move on with their own challenges. MATLAB® codes used in examples throughout the book and solutions to selected exercise questions are available for download. The text will have particular resonance for researchers in control with an electrical engineering background, who wish to avoid spending excessive time in learning complex mathematical, theoretical developments but need to know how to deal with robust and optimal control synthesis problems. Please see [http://km.emotors.ncku.edu.tw/class/hw1.html] for solutions to the exercises provided in this book.

Robust Control Design Using H Methods

Robust Control Design Using H     Methods
Author: Ian R. Petersen,Valery A. Ugrinovskii,Andrey V. Savkin
Publsiher: Springer Science & Business Media
Total Pages: 458
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 9781447104476

Download Robust Control Design Using H Methods Book in PDF, Epub and Kindle

This is a unified collection of important recent results for the design of robust controllers for uncertain systems, primarily based on H8 control theory or its stochastic counterpart, risk sensitive control theory. Two practical applications are used to illustrate the methods throughout.

Robust Control Design An Optimal Control Approach

Robust Control Design  An Optimal Control Approach
Author: Feng Lin
Publsiher: John Wiley & Sons
Total Pages: 378
Release: 2007-09-27
Genre: Science
ISBN: 0470059567

Download Robust Control Design An Optimal Control Approach Book in PDF, Epub and Kindle

Comprehensive and accessible guide to the three main approaches to robust control design and its applications Optimal control is a mathematical field that is concerned with control policies that can be deduced using optimization algorithms. The optimal control approach to robust control design differs from conventional direct approaches to robust control that are more commonly discussed by firstly translating the robust control problem into its optimal control counterpart, and then solving the optimal control problem. Robust Control Design: An Optimal Control Approach offers a complete presentation of this approach to robust control design, presenting modern control theory in an concise manner. The other two major approaches to robust control design, the H_infinite approach and the Kharitonov approach, are also covered and described in the simplest terms possible, in order to provide a complete overview of the area. It includes up-to-date research, and offers both theoretical and practical applications that include flexible structures, robotics, and automotive and aircraft control. Robust Control Design: An Optimal Control Approach will be of interest to those needing an introductory textbook on robust control theory, design and applications as well as graduate and postgraduate students involved in systems and control research. Practitioners will also find the applications presented useful when solving practical problems in the engineering field.

Linear Robust Control

Linear Robust Control
Author: Michael Green,David J. N. Limebeer
Publsiher: Courier Corporation
Total Pages: 562
Release: 2012-09-19
Genre: Science
ISBN: 9780486488363

Download Linear Robust Control Book in PDF, Epub and Kindle

"Recent years have witnessed enormous strides in the field of robust control of dynamical systems -- unfortunately, many of these developments have only been accessible to a small group of experts. In this text for students and control engineers, the authors examines all of these advances, providing an in-depth and exhaustive examination of modern optimal and robust control. "--

Mathematical Methods in Robust Control of Linear Stochastic Systems

Mathematical Methods in Robust Control of Linear Stochastic Systems
Author: Vasile Dragan,Toader Morozan,Adrian-Mihail Stoica
Publsiher: Springer Science & Business Media
Total Pages: 455
Release: 2013-10-04
Genre: Science
ISBN: 9781461486633

Download Mathematical Methods in Robust Control of Linear Stochastic Systems Book in PDF, Epub and Kindle

This second edition of Mathematical Methods in the Robust Control of Linear Stochastic Systems includes a large number of recent results in the control of linear stochastic systems. More specifically, the new results presented are: - A unified and abstract framework for Riccati type equations arising in the stochastic control - Stability and control problems for systems perturbed by homogeneous Markov processes with infinite number of states - Mixed H2 / H∞ control problem and numerical procedures - Linear differential equations with positive evolution on ordered Banach spaces with applications for stochastic systems including both multiplicative white noise and Markovian jumps represented by a Markov chain with countable infinite set of states - Kalman filtering for stochastic systems subject both to state dependent noise and Markovian jumps - H∞ reduced order filters for stochastic systems The book will appeal to graduate students, researchers in advanced control engineering, finance, mathematical systems theory, applied probability and stochastic processes, and numerical analysis. From Reviews of the First Edition: This book is concerned with robust control of stochastic systems. One of the main features is its coverage of jump Markovian systems. ... Overall, this book presents results taking into consideration both white noise and Markov chain perturbations. It is clearly written and should be useful for people working in applied mathematics and in control and systems theory. The references cited provide further reading sources. (George Yin, Mathematical Reviews, Issue 2007 m) This book considers linear time varying stochastic systems, subjected to white noise disturbances and system parameter Markovian jumping, in the context of optimal control ... robust stabilization, and disturbance attenuation. ... The material presented in the book is organized in seven chapters. ... The book is very well written and organized. ... is a valuable reference for all researchers and graduate students in applied mathematics and control engineering interested in linear stochastic time varying control systems with Markovian parameter jumping and white noise disturbances. (Zoran Gajic, SIAM Review, Vol. 49 (3), 2007)

Optimal and Robust Control

Optimal and Robust Control
Author: Luigi Fortuna,Mattia Frasca,Arturo Buscarino
Publsiher: CRC Press
Total Pages: 453
Release: 2021-11-24
Genre: Technology & Engineering
ISBN: 9781000486735

Download Optimal and Robust Control Book in PDF, Epub and Kindle

There are many books on advanced control for specialists, but not many present these topics for non-specialists. Assuming only a basic knowledge of automatic control and signals and systems, this second edition of Optimal and Robust Control offers a straightforward, self-contained handbook of advanced topics and tools in automatic control. The book deals with advanced automatic control techniques, paying particular attention to robustness-the ability to guarantee stability in the presence of uncertainty. It explains advanced techniques for handling uncertainty and optimizing the control loop. It also details analytical strategies for obtaining reduced order models. The authors then propose using the Linear Matrix Inequality (LMI) technique as a unifying tool to solve many types of advanced control problems. Topics covered in the book include, LQR and H∞ approaches Kalman and singular value decomposition Open-loop balancing and reduced order models Closed-loop balancing Positive-real systems, bounded-real systems, and imaginary-negative systems Criteria for stability control Time-delay systems This easy-to-read text presents the essential theoretical background and provides numerous examples and MATLAB® exercises to help the reader efficiently acquire new skills. Written for electrical, electronic, computer science, space, and automation engineers interested in automatic control, this book can also be used for self-study of for a one-semester course in robust control. This fully renewed second edition of the book also includes new fundamental topics such as Lyapunov functions for stability, variational calculus, formulation in terms of optimization problems of matrix algebraic equations, negative-imaginary systems, and time-delay systems.