Statistical Analysis Of High Dimensional Data
Download Statistical Analysis Of High Dimensional Data full books in PDF, epub, and Kindle. Read online free Statistical Analysis Of High Dimensional Data ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Statistical Analysis for High Dimensional Data
Author | : Arnoldo Frigessi,Peter Bühlmann,Ingrid Glad,Mette Langaas,Sylvia Richardson,Marina Vannucci |
Publsiher | : Springer |
Total Pages | : 306 |
Release | : 2016-02-16 |
Genre | : Mathematics |
ISBN | : 9783319270999 |
Download Statistical Analysis for High Dimensional Data Book in PDF, Epub and Kindle
This book features research contributions from The Abel Symposium on Statistical Analysis for High Dimensional Data, held in Nyvågar, Lofoten, Norway, in May 2014. The focus of the symposium was on statistical and machine learning methodologies specifically developed for inference in “big data” situations, with particular reference to genomic applications. The contributors, who are among the most prominent researchers on the theory of statistics for high dimensional inference, present new theories and methods, as well as challenging applications and computational solutions. Specific themes include, among others, variable selection and screening, penalised regression, sparsity, thresholding, low dimensional structures, computational challenges, non-convex situations, learning graphical models, sparse covariance and precision matrices, semi- and non-parametric formulations, multiple testing, classification, factor models, clustering, and preselection. Highlighting cutting-edge research and casting light on future research directions, the contributions will benefit graduate students and researchers in computational biology, statistics and the machine learning community.
Statistics for High Dimensional Data
Author | : Peter Bühlmann,Sara van de Geer |
Publsiher | : Springer Science & Business Media |
Total Pages | : 558 |
Release | : 2011-06-08 |
Genre | : Mathematics |
ISBN | : 9783642201929 |
Download Statistics for High Dimensional Data Book in PDF, Epub and Kindle
Modern statistics deals with large and complex data sets, and consequently with models containing a large number of parameters. This book presents a detailed account of recently developed approaches, including the Lasso and versions of it for various models, boosting methods, undirected graphical modeling, and procedures controlling false positive selections. A special characteristic of the book is that it contains comprehensive mathematical theory on high-dimensional statistics combined with methodology, algorithms and illustrations with real data examples. This in-depth approach highlights the methods’ great potential and practical applicability in a variety of settings. As such, it is a valuable resource for researchers, graduate students and experts in statistics, applied mathematics and computer science.
Analysis of Multivariate and High Dimensional Data
Author | : Inge Koch |
Publsiher | : Cambridge University Press |
Total Pages | : 531 |
Release | : 2014 |
Genre | : Business & Economics |
ISBN | : 9780521887939 |
Download Analysis of Multivariate and High Dimensional Data Book in PDF, Epub and Kindle
This modern approach integrates classical and contemporary methods, fusing theory and practice and bridging the gap to statistical learning.
High Dimensional Statistics
Author | : Martin J. Wainwright |
Publsiher | : Cambridge University Press |
Total Pages | : 571 |
Release | : 2019-02-21 |
Genre | : Business & Economics |
ISBN | : 9781108498029 |
Download High Dimensional Statistics Book in PDF, Epub and Kindle
A coherent introductory text from a groundbreaking researcher, focusing on clarity and motivation to build intuition and understanding.
High dimensional Data Analysis
Author | : Tianwen Tony Cai,Xiaotong Shen |
Publsiher | : World Scientific Publishing Company Incorporated |
Total Pages | : 307 |
Release | : 2011 |
Genre | : Mathematics |
ISBN | : 981432485X |
Download High dimensional Data Analysis Book in PDF, Epub and Kindle
Over the last few years, significant developments have been taking place in high-dimensional data analysis, driven primarily by a wide range of applications in many fields such as genomics and signal processing. In particular, substantial advances have been made in the areas of feature selection, covariance estimation, classification and regression. This book intends to examine important issues arising from high-dimensional data analysis to explore key ideas for statistical inference and prediction. It is structured around topics on multiple hypothesis testing, feature selection, regression, classification, dimension reduction, as well as applications in survival analysis and biomedical research. The book will appeal to graduate students and new researchers interested in the plethora of opportunities available in high-dimensional data analysis.
Introduction to High Dimensional Statistics
Author | : Christophe Giraud |
Publsiher | : CRC Press |
Total Pages | : 410 |
Release | : 2021-08-25 |
Genre | : Computers |
ISBN | : 9781000408355 |
Download Introduction to High Dimensional Statistics Book in PDF, Epub and Kindle
Praise for the first edition: "[This book] succeeds singularly at providing a structured introduction to this active field of research. ... it is arguably the most accessible overview yet published of the mathematical ideas and principles that one needs to master to enter the field of high-dimensional statistics. ... recommended to anyone interested in the main results of current research in high-dimensional statistics as well as anyone interested in acquiring the core mathematical skills to enter this area of research." —Journal of the American Statistical Association Introduction to High-Dimensional Statistics, Second Edition preserves the philosophy of the first edition: to be a concise guide for students and researchers discovering the area and interested in the mathematics involved. The main concepts and ideas are presented in simple settings, avoiding thereby unessential technicalities. High-dimensional statistics is a fast-evolving field, and much progress has been made on a large variety of topics, providing new insights and methods. Offering a succinct presentation of the mathematical foundations of high-dimensional statistics, this new edition: Offers revised chapters from the previous edition, with the inclusion of many additional materials on some important topics, including compress sensing, estimation with convex constraints, the slope estimator, simultaneously low-rank and row-sparse linear regression, or aggregation of a continuous set of estimators. Introduces three new chapters on iterative algorithms, clustering, and minimax lower bounds. Provides enhanced appendices, minimax lower-bounds mainly with the addition of the Davis-Kahan perturbation bound and of two simple versions of the Hanson-Wright concentration inequality. Covers cutting-edge statistical methods including model selection, sparsity and the Lasso, iterative hard thresholding, aggregation, support vector machines, and learning theory. Provides detailed exercises at the end of every chapter with collaborative solutions on a wiki site. Illustrates concepts with simple but clear practical examples.
High Dimensional Data Analysis with Low Dimensional Models
Author | : John Wright,Yi Ma |
Publsiher | : Cambridge University Press |
Total Pages | : 717 |
Release | : 2022-01-13 |
Genre | : Computers |
ISBN | : 9781108489737 |
Download High Dimensional Data Analysis with Low Dimensional Models Book in PDF, Epub and Kindle
Connects fundamental mathematical theory with real-world problems, through efficient and scalable optimization algorithms.
Introduction to High Dimensional Statistics
Author | : Christophe Giraud |
Publsiher | : CRC Press |
Total Pages | : 270 |
Release | : 2014-12-17 |
Genre | : Business & Economics |
ISBN | : 9781482237955 |
Download Introduction to High Dimensional Statistics Book in PDF, Epub and Kindle
Ever-greater computing technologies have given rise to an exponentially growing volume of data. Today massive data sets (with potentially thousands of variables) play an important role in almost every branch of modern human activity, including networks, finance, and genetics. However, analyzing such data has presented a challenge for statisticians