Statistical Analysis for High Dimensional Data

Statistical Analysis for High Dimensional Data
Author: Arnoldo Frigessi,Peter Bühlmann,Ingrid Glad,Mette Langaas,Sylvia Richardson,Marina Vannucci
Publsiher: Springer
Total Pages: 306
Release: 2016-02-16
Genre: Mathematics
ISBN: 9783319270999

Download Statistical Analysis for High Dimensional Data Book in PDF, Epub and Kindle

This book features research contributions from The Abel Symposium on Statistical Analysis for High Dimensional Data, held in Nyvågar, Lofoten, Norway, in May 2014. The focus of the symposium was on statistical and machine learning methodologies specifically developed for inference in “big data” situations, with particular reference to genomic applications. The contributors, who are among the most prominent researchers on the theory of statistics for high dimensional inference, present new theories and methods, as well as challenging applications and computational solutions. Specific themes include, among others, variable selection and screening, penalised regression, sparsity, thresholding, low dimensional structures, computational challenges, non-convex situations, learning graphical models, sparse covariance and precision matrices, semi- and non-parametric formulations, multiple testing, classification, factor models, clustering, and preselection. Highlighting cutting-edge research and casting light on future research directions, the contributions will benefit graduate students and researchers in computational biology, statistics and the machine learning community.

Statistics for High Dimensional Data

Statistics for High Dimensional Data
Author: Peter Bühlmann,Sara van de Geer
Publsiher: Springer Science & Business Media
Total Pages: 558
Release: 2011-06-08
Genre: Mathematics
ISBN: 9783642201929

Download Statistics for High Dimensional Data Book in PDF, Epub and Kindle

Modern statistics deals with large and complex data sets, and consequently with models containing a large number of parameters. This book presents a detailed account of recently developed approaches, including the Lasso and versions of it for various models, boosting methods, undirected graphical modeling, and procedures controlling false positive selections. A special characteristic of the book is that it contains comprehensive mathematical theory on high-dimensional statistics combined with methodology, algorithms and illustrations with real data examples. This in-depth approach highlights the methods’ great potential and practical applicability in a variety of settings. As such, it is a valuable resource for researchers, graduate students and experts in statistics, applied mathematics and computer science.

Analysis of Multivariate and High Dimensional Data

Analysis of Multivariate and High Dimensional Data
Author: Inge Koch
Publsiher: Cambridge University Press
Total Pages: 531
Release: 2014
Genre: Business & Economics
ISBN: 9780521887939

Download Analysis of Multivariate and High Dimensional Data Book in PDF, Epub and Kindle

This modern approach integrates classical and contemporary methods, fusing theory and practice and bridging the gap to statistical learning.

High Dimensional Statistics

High Dimensional Statistics
Author: Martin J. Wainwright
Publsiher: Cambridge University Press
Total Pages: 571
Release: 2019-02-21
Genre: Business & Economics
ISBN: 9781108498029

Download High Dimensional Statistics Book in PDF, Epub and Kindle

A coherent introductory text from a groundbreaking researcher, focusing on clarity and motivation to build intuition and understanding.

High dimensional Data Analysis

High dimensional Data Analysis
Author: Tianwen Tony Cai,Xiaotong Shen
Publsiher: World Scientific Publishing Company Incorporated
Total Pages: 307
Release: 2011
Genre: Mathematics
ISBN: 981432485X

Download High dimensional Data Analysis Book in PDF, Epub and Kindle

Over the last few years, significant developments have been taking place in high-dimensional data analysis, driven primarily by a wide range of applications in many fields such as genomics and signal processing. In particular, substantial advances have been made in the areas of feature selection, covariance estimation, classification and regression. This book intends to examine important issues arising from high-dimensional data analysis to explore key ideas for statistical inference and prediction. It is structured around topics on multiple hypothesis testing, feature selection, regression, classification, dimension reduction, as well as applications in survival analysis and biomedical research. The book will appeal to graduate students and new researchers interested in the plethora of opportunities available in high-dimensional data analysis.

Introduction to High Dimensional Statistics

Introduction to High Dimensional Statistics
Author: Christophe Giraud
Publsiher: CRC Press
Total Pages: 410
Release: 2021-08-25
Genre: Computers
ISBN: 9781000408355

Download Introduction to High Dimensional Statistics Book in PDF, Epub and Kindle

Praise for the first edition: "[This book] succeeds singularly at providing a structured introduction to this active field of research. ... it is arguably the most accessible overview yet published of the mathematical ideas and principles that one needs to master to enter the field of high-dimensional statistics. ... recommended to anyone interested in the main results of current research in high-dimensional statistics as well as anyone interested in acquiring the core mathematical skills to enter this area of research." —Journal of the American Statistical Association Introduction to High-Dimensional Statistics, Second Edition preserves the philosophy of the first edition: to be a concise guide for students and researchers discovering the area and interested in the mathematics involved. The main concepts and ideas are presented in simple settings, avoiding thereby unessential technicalities. High-dimensional statistics is a fast-evolving field, and much progress has been made on a large variety of topics, providing new insights and methods. Offering a succinct presentation of the mathematical foundations of high-dimensional statistics, this new edition: Offers revised chapters from the previous edition, with the inclusion of many additional materials on some important topics, including compress sensing, estimation with convex constraints, the slope estimator, simultaneously low-rank and row-sparse linear regression, or aggregation of a continuous set of estimators. Introduces three new chapters on iterative algorithms, clustering, and minimax lower bounds. Provides enhanced appendices, minimax lower-bounds mainly with the addition of the Davis-Kahan perturbation bound and of two simple versions of the Hanson-Wright concentration inequality. Covers cutting-edge statistical methods including model selection, sparsity and the Lasso, iterative hard thresholding, aggregation, support vector machines, and learning theory. Provides detailed exercises at the end of every chapter with collaborative solutions on a wiki site. Illustrates concepts with simple but clear practical examples.

High Dimensional Data Analysis with Low Dimensional Models

High Dimensional Data Analysis with Low Dimensional Models
Author: John Wright,Yi Ma
Publsiher: Cambridge University Press
Total Pages: 717
Release: 2022-01-13
Genre: Computers
ISBN: 9781108489737

Download High Dimensional Data Analysis with Low Dimensional Models Book in PDF, Epub and Kindle

Connects fundamental mathematical theory with real-world problems, through efficient and scalable optimization algorithms.

Introduction to High Dimensional Statistics

Introduction to High Dimensional Statistics
Author: Christophe Giraud
Publsiher: CRC Press
Total Pages: 270
Release: 2014-12-17
Genre: Business & Economics
ISBN: 9781482237955

Download Introduction to High Dimensional Statistics Book in PDF, Epub and Kindle

Ever-greater computing technologies have given rise to an exponentially growing volume of data. Today massive data sets (with potentially thousands of variables) play an important role in almost every branch of modern human activity, including networks, finance, and genetics. However, analyzing such data has presented a challenge for statisticians