Stochastic Numerical Methods

Stochastic Numerical Methods
Author: Raúl Toral,Pere Colet
Publsiher: John Wiley & Sons
Total Pages: 518
Release: 2014-06-26
Genre: Science
ISBN: 9783527683123

Download Stochastic Numerical Methods Book in PDF, Epub and Kindle

Stochastic Numerical Methods introduces at Master level the numerical methods that use probability or stochastic concepts to analyze random processes. The book aims at being rather general and is addressed at students of natural sciences (Physics, Chemistry, Mathematics, Biology, etc.) and Engineering, but also social sciences (Economy, Sociology, etc.) where some of the techniques have been used recently to numerically simulate different agent-based models. Examples included in the book range from phase-transitions and critical phenomena, including details of data analysis (extraction of critical exponents, finite-size effects, etc.), to population dynamics, interfacial growth, chemical reactions, etc. Program listings are integrated in the discussion of numerical algorithms to facilitate their understanding. From the contents: Review of Probability Concepts Monte Carlo Integration Generation of Uniform and Non-uniform Random Numbers: Non-correlated Values Dynamical Methods Applications to Statistical Mechanics Introduction to Stochastic Processes Numerical Simulation of Ordinary and Partial Stochastic Differential Equations Introduction to Master Equations Numerical Simulations of Master Equations Hybrid Monte Carlo Generation of n-Dimensional Correlated Gaussian Variables Collective Algorithms for Spin Systems Histogram Extrapolation Multicanonical Simulations

Numerical Solution of Stochastic Differential Equations

Numerical Solution of Stochastic Differential Equations
Author: Peter E. Kloeden,Eckhard Platen
Publsiher: Springer Science & Business Media
Total Pages: 666
Release: 2013-04-17
Genre: Mathematics
ISBN: 9783662126165

Download Numerical Solution of Stochastic Differential Equations Book in PDF, Epub and Kindle

The numerical analysis of stochastic differential equations (SDEs) differs significantly from that of ordinary differential equations. This book provides an easily accessible introduction to SDEs, their applications and the numerical methods to solve such equations. From the reviews: "The authors draw upon their own research and experiences in obviously many disciplines... considerable time has obviously been spent writing this in the simplest language possible." --ZAMP

Numerical Methods for Stochastic Partial Differential Equations with White Noise

Numerical Methods for Stochastic Partial Differential Equations with White Noise
Author: Zhongqiang Zhang,George Em Karniadakis
Publsiher: Springer
Total Pages: 394
Release: 2017-09-01
Genre: Mathematics
ISBN: 9783319575117

Download Numerical Methods for Stochastic Partial Differential Equations with White Noise Book in PDF, Epub and Kindle

This book covers numerical methods for stochastic partial differential equations with white noise using the framework of Wong-Zakai approximation. The book begins with some motivational and background material in the introductory chapters and is divided into three parts. Part I covers numerical stochastic ordinary differential equations. Here the authors start with numerical methods for SDEs with delay using the Wong-Zakai approximation and finite difference in time. Part II covers temporal white noise. Here the authors consider SPDEs as PDEs driven by white noise, where discretization of white noise (Brownian motion) leads to PDEs with smooth noise, which can then be treated by numerical methods for PDEs. In this part, recursive algorithms based on Wiener chaos expansion and stochastic collocation methods are presented for linear stochastic advection-diffusion-reaction equations. In addition, stochastic Euler equations are exploited as an application of stochastic collocation methods, where a numerical comparison with other integration methods in random space is made. Part III covers spatial white noise. Here the authors discuss numerical methods for nonlinear elliptic equations as well as other equations with additive noise. Numerical methods for SPDEs with multiplicative noise are also discussed using the Wiener chaos expansion method. In addition, some SPDEs driven by non-Gaussian white noise are discussed and some model reduction methods (based on Wick-Malliavin calculus) are presented for generalized polynomial chaos expansion methods. Powerful techniques are provided for solving stochastic partial differential equations. This book can be considered as self-contained. Necessary background knowledge is presented in the appendices. Basic knowledge of probability theory and stochastic calculus is presented in Appendix A. In Appendix B some semi-analytical methods for SPDEs are presented. In Appendix C an introduction to Gauss quadrature is provided. In Appendix D, all the conclusions which are needed for proofs are presented, and in Appendix E a method to compute the convergence rate empirically is included. In addition, the authors provide a thorough review of the topics, both theoretical and computational exercises in the book with practical discussion of the effectiveness of the methods. Supporting Matlab files are made available to help illustrate some of the concepts further. Bibliographic notes are included at the end of each chapter. This book serves as a reference for graduate students and researchers in the mathematical sciences who would like to understand state-of-the-art numerical methods for stochastic partial differential equations with white noise.

Numerical Methods for Stochastic Control Problems in Continuous Time

Numerical Methods for Stochastic Control Problems in Continuous Time
Author: Harold Kushner,Paul G. Dupuis
Publsiher: Springer Science & Business Media
Total Pages: 480
Release: 2013-11-27
Genre: Mathematics
ISBN: 9781461300076

Download Numerical Methods for Stochastic Control Problems in Continuous Time Book in PDF, Epub and Kindle

Stochastic control is a very active area of research. This monograph, written by two leading authorities in the field, has been updated to reflect the latest developments. It covers effective numerical methods for stochastic control problems in continuous time on two levels, that of practice and that of mathematical development. It is broadly accessible for graduate students and researchers.

Numerical Methods for Stochastic Computations

Numerical Methods for Stochastic Computations
Author: Dongbin Xiu
Publsiher: Princeton University Press
Total Pages: 142
Release: 2010-07-01
Genre: Mathematics
ISBN: 9781400835348

Download Numerical Methods for Stochastic Computations Book in PDF, Epub and Kindle

The@ first graduate-level textbook to focus on fundamental aspects of numerical methods for stochastic computations, this book describes the class of numerical methods based on generalized polynomial chaos (gPC). These fast, efficient, and accurate methods are an extension of the classical spectral methods of high-dimensional random spaces. Designed to simulate complex systems subject to random inputs, these methods are widely used in many areas of computer science and engineering. The book introduces polynomial approximation theory and probability theory; describes the basic theory of gPC methods through numerical examples and rigorous development; details the procedure for converting stochastic equations into deterministic ones; using both the Galerkin and collocation approaches; and discusses the distinct differences and challenges arising from high-dimensional problems. The last section is devoted to the application of gPC methods to critical areas such as inverse problems and data assimilation. Ideal for use by graduate students and researchers both in the classroom and for self-study, Numerical Methods for Stochastic Computations provides the required tools for in-depth research related to stochastic computations. The first graduate-level textbook to focus on the fundamentals of numerical methods for stochastic computations Ideal introduction for graduate courses or self-study Fast, efficient, and accurate numerical methods Polynomial approximation theory and probability theory included Basic gPC methods illustrated through examples

Numerical Methods for Stochastic Processes

Numerical Methods for Stochastic Processes
Author: Nicolas Bouleau,Dominique Lépingle
Publsiher: John Wiley & Sons
Total Pages: 402
Release: 1994-01-14
Genre: Mathematics
ISBN: 0471546410

Download Numerical Methods for Stochastic Processes Book in PDF, Epub and Kindle

Gives greater rigor to numerical treatments of stochastic models. Contains Monte Carlo and quasi-Monte Carlo techniques, simulation of major stochastic procedures, deterministic methods adapted to Markovian problems and special problems related to stochastic integral and differential equations. Simulation methods are given throughout the text as well as numerous exercises.

Numerical Solution of SDE Through Computer Experiments

Numerical Solution of SDE Through Computer Experiments
Author: Peter Eris Kloeden,Eckhard Platen,Henri Schurz
Publsiher: Springer Science & Business Media
Total Pages: 304
Release: 2012-12-06
Genre: Mathematics
ISBN: 9783642579134

Download Numerical Solution of SDE Through Computer Experiments Book in PDF, Epub and Kindle

This book provides an easily accessible, computationally-oriented introduction into the numerical solution of stochastic differential equations using computer experiments. It develops in the reader an ability to apply numerical methods solving stochastic differential equations. It also creates an intuitive understanding of the necessary theoretical background. Software containing programs for over 100 problems is available online.

Numerical Methods for Controlled Stochastic Delay Systems

Numerical Methods for Controlled Stochastic Delay Systems
Author: Harold Kushner
Publsiher: Springer Science & Business Media
Total Pages: 295
Release: 2008-12-19
Genre: Science
ISBN: 9780817646219

Download Numerical Methods for Controlled Stochastic Delay Systems Book in PDF, Epub and Kindle

The Markov chain approximation methods are widely used for the numerical solution of nonlinear stochastic control problems in continuous time. This book extends the methods to stochastic systems with delays. The book is the first on the subject and will be of great interest to all those who work with stochastic delay equations and whose main interest is either in the use of the algorithms or in the mathematics. An excellent resource for graduate students, researchers, and practitioners, the work may be used as a graduate-level textbook for a special topics course or seminar on numerical methods in stochastic control.