Strengthening Metallic Structures Using Externally Bonded Fibre reinforced Polymers

Strengthening Metallic Structures Using Externally Bonded Fibre reinforced Polymers
Author: J. M. C. Cadei,T.J. Stratford,L.C. Hollaway
Publsiher: Unknown
Total Pages: 234
Release: 2004
Genre: Fiber-reinforced plastics
ISBN: 0860175952

Download Strengthening Metallic Structures Using Externally Bonded Fibre reinforced Polymers Book in PDF, Epub and Kindle

Externally bonded FRP strengthening for metallic structures is a rapidly developing technique. This book fulfils an important need for guidance on best practice in its use.

Externally Bonded FRP Reinforcement for RC Structures

Externally Bonded FRP Reinforcement for RC Structures
Author: fib Fédération internationale du béton
Publsiher: fib Fédération internationale du béton
Total Pages: 178
Release: 2001-01-01
Genre: Technology & Engineering
ISBN: 2883940541

Download Externally Bonded FRP Reinforcement for RC Structures Book in PDF, Epub and Kindle

In December 1996, the then CEB established a Task Group with the main objective to elaborate design guidelines for the use of FRP reinforcement in accordance with the design format of the CEB-FIP Model Code and Eurocode2. With the merger of CEB and FIP into fib in 1998, this Task Group became fib TG 9.3 FRP Reinforcement for concrete structures in Commission 9 Reinforcing and Prestressing Materials and Systems. The Task Group consists of about 60 members, representing most European universities, research institutes and industrial companies working in the field of advanced composite reinforcement for concrete structures, as well as corresponding members from Canada, Japan and USA. Meetings are held twice a year and on the research level its work is supported by the EU TMR (European Union Training and Mobility of Researchers) Network "ConFibreCrete”. The work of fib TG 9.3 is performed by five working parties (WP): Material Testing and Characterization (MT&C) Reinforced Concrete (RC) Prestressed Concrete (PC) Externally Bonded Reinforcement (EBR) Marketing and Applications (M&A) This technical report constitutes the work conducted as of to date by the EBR party. This bulletin gives detailed design guidelines on the use of FRP EBR, the practical execution and the quality control, based on the current expertise and state-of-the-art knowledge of the task group members. It is regarded as a progress report since it is not the aim of this report to cover all aspects of RC strengthening with composites. Instead, it focuses on those aspects that form the majority of the design problems. several of the topics presented are subject of ongoing research and development, and the details of some modelling approaches may be subject to future revisions. as knowledge in this field is advancing rapidly, the work of the EBR WP will continue. Inspite of this limit in scope, considerable effort has been made to present a bulletin that is today’s state-of-art in the area of strengthening of concrete structures by means of externally bonded FRP reinforcement.

Strengthening and Rehabilitation of Civil Infrastructures Using Fibre Reinforced Polymer FRP Composites

Strengthening and Rehabilitation of Civil Infrastructures Using Fibre Reinforced Polymer  FRP  Composites
Author: L C Hollaway,J G Teng
Publsiher: Elsevier
Total Pages: 416
Release: 2008-07-18
Genre: Technology & Engineering
ISBN: 9781845694890

Download Strengthening and Rehabilitation of Civil Infrastructures Using Fibre Reinforced Polymer FRP Composites Book in PDF, Epub and Kindle

The repair of deteriorated, damaged and substandard civil infrastructures has become one of the most important issues for the civil engineer worldwide. This important book discusses the use of externally-bonded fibre-reinforced polymer (FRP) composites to strengthen, rehabilitate and retrofit civil engineering structures, covering such aspects as material behaviour, structural design and quality assurance. The first three chapters of the book review structurally-deficient civil engineering infrastructure, including concrete, metallic, masonry and timber structures. FRP composites used in rehabilitation and surface preparation of the component materials are also reviewed. The next four chapters deal with the design of FRP systems for the flexural and shear strengthening of reinforced concrete (RC) beams and the strengthening of RC columns. The following two chapters examine the strengthening of metallic and masonry structures with FRP composites. The last four chapters of the book are devoted to practical considerations in the flexural strengthening of beams with unstressed and prestressed FRP plates, durability of externally bonded FRP composite systems, quality assurance and control, maintenance, repair, and case studies. With its distinguished editors and international team of contributors, Strengthening and rehabilitation of civil infrastructures using fibre-reinforced polymer (FRP) composites is a valuable reference guide for engineers, scientists and technical personnel in civil and structural engineering working on the rehabilitation and strengthening of the civil infrastructure. Reviews the use of fibre-reinforced polymer (FRP) composites in structurally damaged and sub-standard civil engineering structures Examines the role and benefits of fibre-reinforced polymer (FRP) composites in different types of structures such as masonry and metallic strengthening Covers practical considerations including material behaviour, structural design and quality assurance

Strengthening of Reinforced Concrete Structures

Strengthening of Reinforced Concrete Structures
Author: Len C. Hollaway,Mike B. Leeming
Publsiher: CRC Press
Total Pages: 352
Release: 1999-04-09
Genre: Technology & Engineering
ISBN: 0849317150

Download Strengthening of Reinforced Concrete Structures Book in PDF, Epub and Kindle

The in situ rehabilitation or upgrading of reinforced concrete members using bonded steel plates is an effective, convenient, and economic method of improving structural performance. However, disadvantages inherent in the use of steel have stimulated research into using fiber reinforced polymer (FRP) material in its place, with the goal of providing a non-corrosive, more versatile strengthening system. Strengthening of Reinforced Concrete Structures presents a detailed study of the flexural strengthening of reinforced and prestressed concrete members using FRP composite plates. This book covers short and long term performance through model and full-scale experimental testing plus theoretical and numerical considerations. It discusses previous investigative and site work undertaken to strengthen concrete beams using steel bonded pates and the pros and cons of using the steel and composite plate materials. It also presents case histories of construction members upgraded or strengthened using carbon fibre/polymer matrix composite materials bonded to the structural unit. A consortium of academic and industrial researchers provided much of the data and contributed the chapters to this volume. The research and trial tests were undertaken as part of the United Kingdom's ROBUST project. Strengthening of Reinforced Concrete Structures serves to disseminate the large amount of information that resulted from these studies. As detailed in this book, their results will serve to help generate and formulate design specifications as engineers continue to apply these important techniques to an ever-widening range of applications.

Rehabilitation of Metallic Civil Infrastructure Using Fiber Reinforced Polymer FRP Composites

Rehabilitation of Metallic Civil Infrastructure Using Fiber Reinforced Polymer  FRP  Composites
Author: Vistasp M. Karbhari
Publsiher: Elsevier
Total Pages: 467
Release: 2014-03-14
Genre: Technology & Engineering
ISBN: 9780857096654

Download Rehabilitation of Metallic Civil Infrastructure Using Fiber Reinforced Polymer FRP Composites Book in PDF, Epub and Kindle

Fiber-reinforced polymer (FRP) composites are becoming increasingly popular as a material for rehabilitating aging and damaged structures. Rehabilitation of Metallic Civil Infrastructure Using Fiber-Reinforced Polymer (FRP) Composites explores the use of fiber-reinforced composites for enhancing the stability and extending the life of metallic infrastructure such as bridges. Part I provides an overview of materials and repair, encompassing topics of joining steel to FRP composites, finite element modeling, and durability issues. Part II discusses the use of FRP composites to repair steel components, focusing on thin-walled (hollow) steel sections, steel tension members, and cracked aluminum components. Building on Part II, the third part of the book reviews the fatigue life of strengthened components. Finally, Part IV covers the use of FRP composites to rehabilitate different types of metallic infrastructure, with chapters on bridges, historical metallic structures and other types of metallic infrastructure. Rehabilitation of Metallic Civil Infrastructure Using Fiber-Reinforced Polymer (FRP) Composites represents a standard reference for engineers and designers in infrastructure and fiber-reinforced polymer areas and manufacturers in the infrastructure industry, as well as academics and researchers in the field. Looks at the use of FRP composites to repair components such as hollow steel sections and steel tension members Considers ways of assessing the durability and fatigue life of components Reviews applications of FRP to infrastructure such as steel bridges

The International Handbook of FRP Composites in Civil Engineering

The International Handbook of FRP Composites in Civil Engineering
Author: Manoochehr Zoghi
Publsiher: CRC Press
Total Pages: 708
Release: 2013-09-26
Genre: Technology & Engineering
ISBN: 9780849320132

Download The International Handbook of FRP Composites in Civil Engineering Book in PDF, Epub and Kindle

Fiber-reinforced polymer (FRP) composites have become an integral part of the construction industry because of their versatility, enhanced durability and resistance to fatigue and corrosion, high strength-to-weight ratio, accelerated construction, and lower maintenance and life-cycle costs. Advanced FRP composite materials are also emerging for a wide range of civil infrastructure applications. These include everything from bridge decks, bridge strengthening and repairs, and seismic retrofit to marine waterfront structures and sustainable, energy-efficient housing. The International Handbook of FRP Composites in Civil Engineering brings together a wealth of information on advances in materials, techniques, practices, nondestructive testing, and structural health monitoring of FRP composites, specifically for civil infrastructure. With a focus on professional applications, the handbook supplies design guidelines and standards of practice from around the world. It also includes helpful design formulas, tables, and charts to provide immediate answers to common questions. Organized into seven parts, the handbook covers: FRP fundamentals, including history, codes and standards, manufacturing, materials, mechanics, and life-cycle costs Bridge deck applications and the critical topic of connection design for FRP structural members External reinforcement for rehabilitation, including the strengthening of reinforced concrete, masonry, wood, and metallic structures FRP composites for the reinforcement of concrete structures, including material characteristics, design procedures, and quality assurance–quality control (QA/QC) issues Hybrid FRP composite systems, with an emphasis on design, construction, QA/QC, and repair Quality control, quality assurance, and evaluation using nondestructive testing, and in-service monitoring using structural health monitoring of FRP composites, including smart composites that can actively sense and respond to the environment and internal states FRP-related books, journals, conference proceedings, organizations, and research sources Comprehensive yet concise, this is an invaluable reference for practicing engineers and construction professionals, as well as researchers and students. It offers ready-to-use information on how FRP composites can be more effectively utilized in new construction, repair and reconstruction, and architectural engineering.

Advanced Polymer Composites for Structural Applications in Construction

Advanced Polymer Composites for Structural Applications in Construction
Author: L C Hollaway,M. K. Chryssanthopoulos,Stuart S. J. Moy
Publsiher: Woodhead Publishing
Total Pages: 788
Release: 2004-04-22
Genre: Science
ISBN: 1855737361

Download Advanced Polymer Composites for Structural Applications in Construction Book in PDF, Epub and Kindle

Following the success of ACIC 2002, this is the 2nd International Conference focusing on the application and further exploitation of advanced composites in construction held at the University of Surrey in April 2004. With over 100 delegates the conference brought together practicing engineers, asset managers, researchers and representatives of regulatory bodies to promote the active exchange of scientific and technical information on the rapidly changing scene of advanced composites in construction. The aim of the conference was to encourage the presentation of new concepts, techniques and case studies, which will lead to greater exploitation of advanced polymer composites and FRP materials for the civil engineering infrastructure, rehabilitation and renewal.

Advanced fibre reinforced polymer FRP composites for structural applications

Advanced fibre reinforced polymer  FRP  composites for structural applications
Author: J. Custódio,S. Cabral-Fonseca
Publsiher: Elsevier Inc. Chapters
Total Pages: 928
Release: 2013-09-30
Genre: Technology & Engineering
ISBN: 9780128088524

Download Advanced fibre reinforced polymer FRP composites for structural applications Book in PDF, Epub and Kindle

This chapter briefly discusses the performance and durability of bonded composite systems used for on-site rehabilitation of timber and concrete structures. In spite of some recent developments, the exploitation of their full potential is still often restrained by the lack of structural design guidance, standards for durability assessment and on-site acceptance testing. Therefore, this chapter provides a review of current understanding on the use of hybrid bonded composite systems on the construction site in terms of structural repair, reinforcement, and seismic retrofit. It focuses on the requirements and practical difficulties in the work on-site with regards to the performance and durability of the rehabilitated structure, the characteristics and requirements that must be fulfilled by structural adhesives and advanced polymer composite materials, and the subsequent need for quality control and in-service monitoring. It also highlights the factors affecting performance and durability of bonded joints. Finally, a general overview of the research needs and a bibliography giving references to more detailed information on this topic is given.