The Atmosphere over Mountainous Regions

The Atmosphere over Mountainous Regions
Author: Miguel A. C. Teixeira,Daniel J. Kirshbaum,Haraldur Ólafsson,,Peter F. Sheridan,Ivana Stiperski
Publsiher: Frontiers Media SA
Total Pages: 162
Release: 2016-11-09
Genre: Electronic book
ISBN: 9782889450169

Download The Atmosphere over Mountainous Regions Book in PDF, Epub and Kindle

Mountainous regions occupy a significant fraction of the Earth's continents and are characterized by specific meteorological phenomena operating on a wide range of scales. Being a home to large human populations, the impact of mountains on weather and hydrology has significant practical consequences. Mountains modulate the climate and create micro-climates, induce different types of thermally and dynamically driven circulations, generate atmospheric waves of various scales (known as mountain waves), and affect the boundary layer characteristics and the dispersion of pollutants. At the local scale, strong downslope winds linked with mountain waves (such as the Foehn and Bora) can cause severe damage. Mountain wave breaking in the high atmosphere is a source of Clear Air Turbulence, and lee wave rotors are a major near-surface aviation hazard. Mountains also act to block strongly stratified air layers, leading to the formation of valley cold air-pools (with implications for road safety, pollution, crop damage, etc.) and gap flows. Presently, neither the fine-scale structure of orographic precipitation nor the initiation of deep convection by mountainous terrain can be resolved adequately by regional-to global-scale models, requiring appropriate downscaling or parameterization. Additionally, the shortest mountain waves need to be parameterized in global weather and climate prediction models, because they exert a drag on the atmosphere. This drag not only decelerates the global atmospheric circulation, but also affects temperatures in the polar stratosphere, which control ozone depletion. It is likely that both mountain wave drag and orographic precipitation lead to non-trivial feedbacks in climate change scenarios. Measurement campaigns such as MAP, T-REX, Materhorn, COLPEX and i-Box provided a wealth of mountain meteorology field data, which is only starting to be explored. Recent advances in computing power allow numerical simulations of unprecedented resolution, e.g. LES modelling of rotors, mountain wave turbulence, and boundary layers in mountainous regions. This will lead to important advances in understanding these phenomena, as well as mixing and pollutant dispersion over complex terrain, or the onset and breakdown of cold air pools. On the other hand, recent analyses of global circulation biases point towards missing drag, especially in the southern hemisphere, which may be due to processes currently neglected in parameterizations. A better understanding of flow over orography is also crucial for a better management of wind power and a more effective use of data assimilation over complex terrain. This Research Topic includes contributions that aim to shed light on a number of these issues, using theory, numerical modelling, field measurements, and laboratory experiments.

The Atmosphere over Mountainous Regions

The Atmosphere over Mountainous Regions
Author: Peter F. Sheridan,Daniel J. Kirshbaum,Haraldur Olafsson,Ivana Stiperski,Miguel A. C. Teixeira
Publsiher: Unknown
Total Pages: 160
Release: 2016
Genre: Physical geography
ISBN: OCLC:1135349034

Download The Atmosphere over Mountainous Regions Book in PDF, Epub and Kindle

Mountainous regions occupy a significant fraction of the Earth's continents and are characterized by specific meteorological phenomena operating on a wide range of scales. Being a home to large human populations, the impact of mountains on weather and hydrology has significant practical consequences. Mountains modulate the climate and create micro-climates, induce different types of thermally and dynamically driven circulations, generate atmospheric waves of various scales (known as mountain waves), and affect the boundary layer characteristics and the dispersion of pollutants. At the local scale, strong downslope winds linked with mountain waves (such as the Foehn and Bora) can cause severe damage. Mountain wave breaking in the high atmosphere is a source of Clear Air Turbulence, and lee wave rotors are a major near-surface aviation hazard. Mountains also act to block strongly-stratified air layers, leading to the formation of valley cold-air pools (with implications for road safety, pollution, crop damage, etc.) and gap flows. Presently, neither the fine-scale structure of orographic precipitation nor the initiation of deep convection by mountainous terrain can be resolved adequately by regional-to global-scale models, requiring appropriate downscaling or parameterization. Additionally, the shortest mountain waves need to be parameterized in global weather and climate prediction models, because they exert a drag on the atmosphere. This drag not only decelerates the global atmospheric circulation, but also affects temperatures in the polar stratosphere, which control ozone depletion. It is likely that both mountain wave drag and orographic precipitation lead to non-trivial feedbacks in climate change scenarios. Measurement campaigns such as MAP, T-REX, Materhorn, COLPEX and i-Box provided a wealth of mountain meteorology field data, which is only starting to be explored. Recent advances in computing power allow numerical simulations of unprecedented resolution, e.g. LES modelling of rotors, mountain wave turbulence, and boundary layers in mountainous regions. This will lead to important advances in understanding these phenomena, as well as mixing and pollutant dispersion over complex terrain, or the onset and breakdown of cold-air pools. On the other hand, recent analyses of global circulation biases point towards missing drag, especially in the southern hemisphere, which may be due to processes currently neglected in parameterizations. A better underst ...

Mountain Weather Research and Forecasting

Mountain Weather Research and Forecasting
Author: Fotini K. Chow,Stephan F.J. De Wekker,Bradley J. Snyder
Publsiher: Springer Science & Business Media
Total Pages: 760
Release: 2012-08-30
Genre: Science
ISBN: 9789400740983

Download Mountain Weather Research and Forecasting Book in PDF, Epub and Kindle

This book provides readers with a broad understanding of the fundamental principles driving atmospheric flow over complex terrain and provides historical context for recent developments and future direction for researchers and forecasters. The topics in this book are expanded from those presented at the Mountain Weather Workshop, which took place in Whistler, British Columbia, Canada, August 5-8, 2008. The inspiration for the workshop came from the American Meteorological Society (AMS) Mountain Meteorology Committee and was designed to bridge the gap between the research and forecasting communities by providing a forum for extended discussion and joint education. For academic researchers, this book provides some insight into issues important to the forecasting community. For the forecasting community, this book provides training on fundamentals of atmospheric processes over mountainous regions, which are notoriously difficult to predict. The book also helps to provide a better understanding of current research and forecast challenges, including the latest contributions and advancements to the field. The book begins with an overview of mountain weather and forecasting chal- lenges specific to complex terrain, followed by chapters that focus on diurnal mountain/valley flows that develop under calm conditions and dynamically-driven winds under strong forcing. The focus then shifts to other phenomena specific to mountain regions: Alpine foehn, boundary layer and air quality issues, orographic precipitation processes, and microphysics parameterizations. Having covered the major physical processes, the book shifts to observation and modelling techniques used in mountain regions, including model configuration and parameterizations such as turbulence, and model applications in operational forecasting. The book concludes with a discussion of the current state of research and forecasting in complex terrain, including a vision of how to bridge the gap in the future.

Mountain Weather and Climate

Mountain Weather and Climate
Author: Roger G. Barry
Publsiher: Routledge
Total Pages: 262
Release: 2013-09-05
Genre: Science
ISBN: 9781134910953

Download Mountain Weather and Climate Book in PDF, Epub and Kindle

This book provides a comprehensive text describing and explaining mountain weather and climate processes. It presents the results of a broad range of studies drawn from across the world. The book is useful for specialist courses in climatology as well as for scientists in related disciplines.

Climate and Hydrology of Mountain Areas

Climate and Hydrology of Mountain Areas
Author: Carmen de Jong,David N. Collins,Roberto Ranzi
Publsiher: John Wiley & Sons
Total Pages: 338
Release: 2005-08-05
Genre: Science
ISBN: 9780470858233

Download Climate and Hydrology of Mountain Areas Book in PDF, Epub and Kindle

A comprehensive overview of interaction of the major hydrological and meteorological processes in mountain areas ie Cryosphere and Climatic Change, Snow Melt and Soil Water, Run-off and Floods, Water fluxes and Water Balance, Hydro-meteorological Coupling and Modelling. Each section will review recent research in the field and illustrate key interactions with case studies from mountainous regions in Europe, The Americas and Central Asia.

Mountain Meteorology

Mountain Meteorology
Author: C. David Whiteman
Publsiher: Oxford University Press
Total Pages: 376
Release: 2000-06-01
Genre: Science
ISBN: 9780199881062

Download Mountain Meteorology Book in PDF, Epub and Kindle

Mountain Meteorology: Fundamentals and Applications offers first an introduction to the basic principles and concepts of mountain meteorology, then goes on to discuss their application in natural resources management. It includes over two hundred beautiful, full-color photographs, figures, and diagrams, as well as observable indicators of atmospheric processes--such as winds, temperature, and clouds--to facilitate the recognition of weather systems and events for a variety of readers. It is ideal for those who spend time in or near mountains and whose daily activities are affected by weather. As a comprehensive work filled with diverse examples and colorful illustrations, it is essential for professionals, scholars, and students of meteorology.

The Atmospheric Boundary Layer

The Atmospheric Boundary Layer
Author: J. R. Garratt
Publsiher: Cambridge University Press
Total Pages: 340
Release: 1994-04-21
Genre: Mathematics
ISBN: 0521467454

Download The Atmospheric Boundary Layer Book in PDF, Epub and Kindle

The book gives a comprehensive and lucid account of the science of the atmospheric boundary layer (ABL). There is an emphasis on the application of the ABL to numerical modelling of the climate. The book comprises nine chapters, several appendices (data tables, information sources, physical constants) and an extensive reference list. Chapter 1 serves as an introduction, with chapters 2 and 3 dealing with the development of mean and turbulence equations, and the many scaling laws and theories that are the cornerstone of any serious ABL treatment. Modelling of the ABL is crucially dependent for its realism on the surface boundary conditions, and chapters 4 and 5 deal with aerodynamic and energy considerations, with attention to both dry and wet land surfaces and sea. The structure of the clear-sky, thermally stratified ABL is treated in chapter 6, including the convective and stable cases over homogeneous land, the marine ABL and the internal boundary layer at the coastline. Chapter 7 then extends the discussion to the cloudy ABL. This is seen as particularly relevant, since the extensive stratocumulus regions over the subtropical oceans and stratus regions over the Arctic are now identified as key players in the climate system. Finally, chapters 8 and 9 bring much of the book's material together in a discussion of appropriate ABL and surface parameterization schemes in general circulation models of the atmosphere that are being used for climate simulation.

Atmospheric Processes over Complex Terrain

Atmospheric Processes over Complex Terrain
Author: William Blumen
Publsiher: Springer
Total Pages: 331
Release: 2016-06-30
Genre: Science
ISBN: 9781935704256

Download Atmospheric Processes over Complex Terrain Book in PDF, Epub and Kindle

The objectives of the American Meteorological Society are "the development and dissemination of knowledge of meteorology in all its phases and applications, and the advancement of its professional ideals." The organization of the Society took place in affiliation with the American Association for the Advancement of Science at Saint Louis, Missouri, December 29, 1919, and its incorporation, at Washington, D. C., January 21, 1920. The work of the Society is carried on by the Bulletin, the Journal, and Meteorological Monographs, by papers and discussions at meetings of the Society, through the offices of the Secretary and the Executive Secretary, and by correspondence. All of the Americas are represented in the membership of the Society as well as many foreign countries.