The Physics and Parameterization of Moist Atmospheric Convection

The Physics and Parameterization of Moist Atmospheric Convection
Author: R.K. Smith
Publsiher: Springer Science & Business Media
Total Pages: 499
Release: 2013-04-17
Genre: Science
ISBN: 9789401588287

Download The Physics and Parameterization of Moist Atmospheric Convection Book in PDF, Epub and Kindle

An up-to-date summary of our understanding of the dynamics and thermodynamics of moist atmospheric convection, with a strong focus on recent developments in the field. The book also reviews ways in which moist convection may be parameterised in large-scale numerical models - a field in which there is still some controversy - and discusses the implications of convection for large-scale flow. Audience: The book is aimed at the graduate level and research meteorologists as well as scientists in other disciplines who need to know more about moist convection and its representation in numerical models.

The Physics and Parameterization of Moist Atmospheric Convection

The Physics and Parameterization of Moist Atmospheric Convection
Author: R. K. Smith
Publsiher: Unknown
Total Pages: 512
Release: 2014-01-15
Genre: Electronic Book
ISBN: 9401588295

Download The Physics and Parameterization of Moist Atmospheric Convection Book in PDF, Epub and Kindle

Parameterization of Atmospheric Convection

Parameterization of Atmospheric Convection
Author: Robert S Plant,Jun-Ichi Yano
Publsiher: World Scientific
Total Pages: 1172
Release: 2015-08-21
Genre: Technology & Engineering
ISBN: 9781783266920

Download Parameterization of Atmospheric Convection Book in PDF, Epub and Kindle

Precipitating atmospheric convection is fundamental to the Earth's weather and climate. It plays a leading role in the heat, moisture and momentum budgets. Appropriate modelling of convection is thus a prerequisite for reliable numerical weather prediction and climate modelling. The current standard approach is to represent it by subgrid-scale convection parameterization. Parameterization of Atmospheric Convection provides, for the first time, a comprehensive presentation of this important topic. The two-volume set equips readers with a firm grasp of the wide range of important issues, and thorough coverage is given of both the theoretical and practical aspects. This makes the parameterization problem accessible to a wider range of scientists than before. At the same time, by providing a solid bottom-up presentation of convection parameterization, this set is the definitive reference point for atmospheric scientists and modellers working on such problems. Volume 1 of this two-volume set focuses on the basic principles: introductions to atmospheric convection and tropical dynamics, explanations and discussions of key parameterization concepts, and a thorough and critical exploration of the mass-flux parameterization framework, which underlies the methods currently used in almost all operational models and at major climate modelling centres. Volume 2 focuses on the practice, which also leads to some more advanced fundamental issues. It includes: perspectives on operational implementations and model performance, tailored verification approaches, the role and representation of cloud microphysics, alternative parameterization approaches, stochasticity, criticality, and symmetry constraints. Contents:Volume 1:Basic Parameterization Concepts and Issues:Moist Atmospheric Convection: An Introduction and Overview (Á Horváth)Sub-Grid Parameterization Problem (J-I Yano)Scale Separation (J-I Yano)Quasi-Equilibrium (R S Plant and J-I Yano)Tropical Dynamics: Large-Scale Convectively Coupled Waves (Ž Fuchs)Mass-Flux Parameterization:Hot-Tower Hypothesis and Mass-Flux Formulation (J-I Yano)Formulation of the Mass-Flux Convective Parameterization (J-I Yano)Thermodynamic Effects of Convection under the Mass-Flux Formulation (J-I Yano)Spectral and Bulk Mass-Flux Representations (R S Plant and O Martínez-Alvarado)Entrainment and Detrainment Formulations for Mass-Flux Parameterization (W C de Rooy, J-I Yano, P Bechtold and S J Böing)Closure (J-I Yano and R S Plant)Convective Vertical Velocity (J-I Yano)Downdraughts (J-I Yano)Momentum Transfer (J-I Yano)Volume 2:Operational Issues:Convection in Global Numerical Weather Prediction (P Bechtold)Satellite Observations of Convection and Their Implications for Parameterizations (J Quaas and P Stier)Convection and Waves on Small Planets and the Real Earth (P Bechtold, N Semane and S Malardel)Microphysics of Convective Cloud and Its Treatment in Parameterization (V T J Phillips and J-I Yano)Model Resolution Issues and New Approaches in the Convection-Permitting Regimes (L Gerard)Stochastic Aspects of Convective Parameterization (R S Plant, L Bengtsson and M A Whitall)Verification of High-Resolution Precipitation Forecast with Radar-Based Data (D Řezáčová, B Szintai, B Jakubiak, J-I Yano and S Turner)Unification and Consistency:Formulations of Moist Thermodynamics for Atmospheric Modelling (P Marquet and J-F Geleyn)Representation of Microphysical Processes in Cloud-Resolving Models (A P Khain)Cumulus Convection as a Turbulent Flow (A Grant)Clouds and Convection as Subgrid-Scale Distributions (E Machulskaya)Towards a Unified and Self-Consistent Parameterization Framework (J-I Yano, L Bengtsson, J-F Geleyn and R Brozkova)Theoretical Physics Perspectives:Regimes of Self-Organized Criticality in Atmospheric Convection (F Spineanu, M Vlad and D Palade)Invariant and Conservative Parameterization Schemes (A Bihlo, E Dos Santos Cardoso-Bihlo and R O Popovych)Conclusions:Conclusions (R S Plant and J-I Yano) Readership: Atmospheric scientists and modellers. Key Features:The first coherent book to focus on convective parameterization for climate modelling and numerical weather predictionClear focus on the underpinning theory of parameterization, and its possible extensionsPlaces current efforts to improve parameterizations firmly into the theoretical context rather than focusing on details of the technical implementation or changes to overall model performanceKeywords:Atmospheric Convection;Parameterization;Numerical Modelling;Numerical Weather Prediction;Global Climate Modelling

Atmospheric Convection

Atmospheric Convection
Author: Kerry A. Emanuel
Publsiher: Oxford University Press, USA
Total Pages: 598
Release: 1994
Genre: Nature
ISBN: 0195066308

Download Atmospheric Convection Book in PDF, Epub and Kindle

"[A]n excellent monograph by a leading atmospheric scientist...will be consulted by everyone interested in the complexities of dynamical meteorology and in the improvement of practical methods of climate and weather prediction."--Physics Today

An Introduction to the Global Circulation of the Atmosphere

An Introduction to the Global Circulation of the Atmosphere
Author: David Randall
Publsiher: Princeton University Press
Total Pages: 454
Release: 2015-06-23
Genre: Science
ISBN: 9780691148960

Download An Introduction to the Global Circulation of the Atmosphere Book in PDF, Epub and Kindle

The most comprehensive advanced graduate-level textbook on the subject This is a graduate-level textbook on the global circulation of the Earth's atmosphere—the large-scale system of winds by which energy is transported around the planet, from the tropical latitudes to the poles. Written by David Randall, one of the world’s foremost experts on the subject, it is the most comprehensive textbook on the topic. Intended for Earth science students who have completed some graduate-level coursework in atmospheric dynamics, the book will help students build on that foundation, preparing them for research in the field. The book describes the many phenomena of the circulation and explains them in terms of current ideas from fluid dynamics and thermodynamics, with frequent use of isentropic coordinates and using the methods of vector calculus. It emphasizes the key roles of water vapor and clouds, includes detailed coverage of energy flows and transformations, and pays close attention to scale interactions. The book also describes the major historical contributions of key scientists, giving a human dimension to the narrative, and it closes with a discussion of how the global circulation is evolving as the Earth’s climate changes. The most comprehensive graduate-level textbook on the subject Written by one of the world’s leading experts Connects global circulation and climate phenomena Addresses energy, moisture, and angular-momentum balance; the hydrologic cycle; and atmospheric turbulence and convection Emphasizes the energy cycle of the atmosphere; the role of moist processes; and circulation as an unpredictable, chaotic process Helps prepare students for research An online illustration package is available to professors

General Circulation Model Development

General Circulation Model Development
Author: David A. Randall
Publsiher: Elsevier
Total Pages: 849
Release: 2000-07-19
Genre: Science
ISBN: 9780080507231

Download General Circulation Model Development Book in PDF, Epub and Kindle

General Circulation Models (GCMs) are rapidly assuming widespread use as powerful tools for predicting global events on time scales of months to decades, such as the onset of EL Nino, monsoons, soil moisture saturation indices, global warming estimates, and even snowfall predictions. While GCMs have been praised for helping to foretell the current El Nino and its impact on droughts in Indonesia, its full power is only now being recognized by international scientists and governments who seek to link GCMs to help them estimate fish harvests, risk of floods, landslides, and even forest fires. Scientists in oceanography, hydrology, meteorology, and climatology and civil, ocean, and geological engineers perceive a need for a reference on GCM design. In this compilation of information by an internationally recognized group of experts, Professor Randall brings together the knowledge base of the forerunners in theoretical and applied frontiers of GCM development. General Circulation Model Development focuses on the past, present, and future design of numerical methods for general circulation modeling, as well as the physical parameterizations required for their proper implementation. Additional chapters on climate simulation and other applications provide illustrative examples of state-of-the-art GCM design. Key Features * Foreword by Norman Phillips * Authoritative overviews of current issues and ideas on global circulation modeling by leading experts * Retrospective and forward-looking chapters by Akio Arakawa of UCLA * Historical perspectives on the early years of general circulation modeling * Indispensable reference for researchers and graduate students

The Global Circulation of the Atmosphere

The Global Circulation of the Atmosphere
Author: Tapio Schneider,Adam H. Sobel
Publsiher: Princeton University Press
Total Pages: 400
Release: 2022-12-13
Genre: Science
ISBN: 9780691242392

Download The Global Circulation of the Atmosphere Book in PDF, Epub and Kindle

Despite major advances in the observation and numerical simulation of the atmosphere, basic features of the Earth's climate remain poorly understood. Integrating the available data and computational resources to improve our understanding of the global circulation of the atmosphere remains a challenge. Theory must play a critical role in meeting this challenge. This book provides an authoritative summary of the state of the art on this front. Bringing together sixteen of the field's leading experts to address those aspects of the global circulation of the atmosphere most relevant to climate, the book brings the reader up to date on the key frontiers in general circulation theory-including the nonlinear and turbulent global-scale dynamics that determine fundamental aspects of the Earth's climate. While emphasizing theory, as expressed through relatively simple mathematical models, it also draws connections to simulations with comprehensive general circulation models. Topics include the dynamics of storm tracks, interactions between wave dynamics and the hydrological cycle, monsoons, tropical and extratropical dynamics and interactions, and the processes controlling atmospheric humidity. An essential resource for graduate students in atmospheric, ocean, and climate sciences and for researchers seeking an overview of the field, The Global Circulation of the Atmosphere sets the standard for future research in a science that stands at a critical juncture. With a foreword by Edward Lorenz, the book includes chapters by Christopher Bretherton; Kerry Emanuel; Isaac Held; David Neelin; Raymond Pierrehumbert, Hélène Brogniez, and Rémy Roca; Alan Plumb; Walter Robinson; Tapio Schneider; Richard Seager and David Battisti; Adam Sobel; Kyle Swanson; and Pablo Zurita-Gotor and Richard Lindzen.

Encyclopedia of Climate and Weather

Encyclopedia of Climate and Weather
Author: Dr. Stephen H. Schneider
Publsiher: Oxford University Press
Total Pages: 1478
Release: 2011-06-09
Genre: Nature
ISBN: 9780199765324

Download Encyclopedia of Climate and Weather Book in PDF, Epub and Kindle

This three-volume A-to-Z compendium consists of over 300 entries written by a team of leading international scholars and researchers working in the field. Authoritative and up-to-date, the encyclopedia covers the processes that produce our weather, important scientific concepts, the history of ideas underlying the atmospheric sciences, biographical accounts of those who have made significant contributions to climatology and meteorology and particular weather events, from extreme tropical cyclones and tornadoes to local winds.