The Role of Rydberg States in Spectroscopy and Photochemistry

The Role of Rydberg States in Spectroscopy and Photochemistry
Author: C. Sándorfy
Publsiher: Springer Science & Business Media
Total Pages: 524
Release: 2006-04-11
Genre: Science
ISBN: 9780306469381

Download The Role of Rydberg States in Spectroscopy and Photochemistry Book in PDF, Epub and Kindle

The aim of this volume is to offer a balanced overview of molecular Rydberg spectroscopy as it has developed over recent decades. Recent evolution has split Rydberg spectroscopy into two apparently distinct fields: the one concerns the low (n=3-5) Rydberg states, the other the very high (typically EMn/EM”150) Rydberg states. The former is aimed at spectral levels where Rydberg, valence-shell, and intermediate-type states interact, with a variety of photochemical consequences. The latter considers states extremely close to the ionization limit, from whereionization is possible with a very slight amount of additional energy. Recently developed techniques make it possible to produce ions in well-defined electronic, vibrational and rotational states, including states resulting from spin-orbit or Jahn-Teller splitting. It is then possible to study the structure and reactions of such state-selected ions as well as those of the corresponding neutral molecules. These techniques amount to badly needed high resolution photoelectron spectroscopy.

Chemical Spectroscopy and Photochemistry in the Vacuum Ultraviolet

Chemical Spectroscopy and Photochemistry in the Vacuum Ultraviolet
Author: Camille Sandorfy,Pierre Ausloos,M.B. Robin
Publsiher: Springer Science & Business Media
Total Pages: 599
Release: 2012-12-06
Genre: Science
ISBN: 9789401021531

Download Chemical Spectroscopy and Photochemistry in the Vacuum Ultraviolet Book in PDF, Epub and Kindle

It is probably safe to predict that the future of chemistry is linked to the excited states of molecules and to other short lived species, ions and free radicals. Molecules have only one ground state but many excited states. However large the scope of normal, ground state chemistry might be, above and beyond it lies the world of excited states, each one having its own chemis try. The electronic transitions leading to the excited states, either discrete of continuous, are examined in molecular elec tronic spectroscopy. Electronic spectroscopy is the queen of all spectroscopies: for if we have the resolution we have everything. Vnfortunately, the chemist who is interested in the structure and reactions of larger molecules must often renounce all that infor mation. The spectra are complex and often diffuse; resolution does not always help. To understand such spectra he must look at whole families of molecules; to some extent structural analogies help. Let us call this chemical spectroscopy and handle it with care. In order to understand the properties of molecules we also need theory. We know that molecular problems are, in principle, soluble by the methods of quantum mechanics. Present time quan tum chemistry is able to provide a nearly accurate description of not too large molecules in their ground states. It is probablY again safe to predict that the future of quantum chemistry is connected with molecular excited states or, generally spoken, the accurate handling of the open-shell problem.

Handbook of High resolution Spectroscopy

Handbook of High resolution Spectroscopy
Author: Martin Quack,Frederic Merkt
Publsiher: John Wiley & Sons
Total Pages: 2236
Release: 2011-09-26
Genre: Science
ISBN: 9780470066539

Download Handbook of High resolution Spectroscopy Book in PDF, Epub and Kindle

The field of High-Resolution Spectroscopy has been considerably extended and even redefined in some areas. Combining the knowledge of spectroscopy, laser technology, chemical computation, and experiments, Handbook of High-Resolution Spectroscopy provides a comprehensive survey of the whole field as it presents itself today, with emphasis on the recent developments. This essential handbook for advanced research students, graduate students, and researchers takes a systematic approach through the range of wavelengths and includes the latest advances in experiment and theory that will help and guide future applications. The first comprehensive survey in high-resolution molecular spectroscopy for over 15 years Brings together the knowledge of spectroscopy, laser technology, chemical computation and experiments Brings the reader up-to-date with the many advances that have been made in recent times Takes the reader through the range of wavelengths, covering all possible techniques such as Microwave Spectroscopy, Infrared Spectroscopy, Raman Spectroscopy, VIS, UV and VUV Combines theoretical, computational and experimental aspects Has numerous applications in a wide range of scientific domains Edited by two leaders in this field Provides an overview of rotational, vibration, electronic and photoelectron spectroscopy Volume 1 - Introduction: Fundamentals of Molecular Spectroscopy Volume 2 - High-Resolution Molecular Spectroscopy: Methods and Results Volume 3 - Special Methods & Applications

Spectroscopic Techniques for Polymer Characterization

Spectroscopic Techniques for Polymer Characterization
Author: Yukihiro Ozaki,Harumi Sato
Publsiher: John Wiley & Sons
Total Pages: 500
Release: 2022-03-14
Genre: Science
ISBN: 9783527348336

Download Spectroscopic Techniques for Polymer Characterization Book in PDF, Epub and Kindle

An insightful exploration of cutting-edge spectroscopic techniques in polymer characterization In Spectroscopic Techniques for Polymer Characterization: Methods, Instrumentation, Applications, a team of distinguished chemists delivers a comprehensive exploration of the vast potential of spectroscopic characterization techniques in polymer research. The book offers a concise outline of the principles, advantages, instrumentation, experimental techniques, and noteworthy applications of cutting-edge spectroscopy. Covering a wide range of polymers, from nylon to complex polymeric nanocomposites, the author presents recent developments in polymer science to polymer, analytical, and material chemists, assisting them in keeping track of the progress in modern spectroscopy. Spectroscopic Techniques for Polymer Characterization contains contributions from pioneers in modern spectroscopic techniques from around the world. The included materials bridge the gap between spectroscopists, polymer scientists, and engineers in academia and industry. The book also offers: A thorough introduction to the progress in spectroscopic techniques, including polymer spectroscopy and near-infrared spectroscopy Comprehensive explorations of topical polymers studied by spectroscopy, including polymer thin films, fluoropolymers, polymer solutions, conductive polymers Practical discussions of infrared imaging, near-infrared imaging, two-dimensional correlation spectroscopy, and far-ultraviolet spectroscopy In-depth examinations of spectroscopic studies of weak hydrogen bonding in polymers Spectroscopic Techniques for Polymer Characterization: Methods, Instrumentation, Applications is a must-read reference for polymer, analytical, and physical chemists, as well as materials scientists and spectroscopists seeking a one-stop resource for polymer characterization using spectroscopic analyses.

Frontiers and Advances in Molecular Spectroscopy

Frontiers and Advances in Molecular Spectroscopy
Author: Jaan Laane
Publsiher: Elsevier
Total Pages: 788
Release: 2017-11-13
Genre: Science
ISBN: 9780128112212

Download Frontiers and Advances in Molecular Spectroscopy Book in PDF, Epub and Kindle

Frontiers and Advances in Molecular Spectroscopy once again brings together the most eminent scientists from around the world to describe their work at the cutting-edge of molecular spectroscopy. Much of what we know about atoms, molecules and the nature of matter has been obtained using spectroscopy over the last one hundred years or so. Going far beyond the topics discussed in Jaan Laane’s earlier book on the subject, these chapters describe new methodologies and applications, instrumental developments and theory, which are taking spectroscopy into still new frontiers. The robust range of topics once again demonstrates the wide utility of spectroscopic techniques. New topics include ultrafast spectroscopy of the transition state, SERS/far-uv spectroscopy, femtosecond coherent anti-Stokes Raman spectroscopy, high-resolution laser induced fluorescence spectroscopy, Raman spectroscopy and biosensors, vibrational optical activity, ultrafast two-dimensional spectroscopy, biology with x-ray lasers, isomerization dynamics and hydrogen bonding, single molecule imaging, spectra of intermediates, matrix isolation spectroscopy and more. Covers spectroscopic investigations on the cutting edge of science Written and edited by leading experts in their respective fields Allows researchers to access a broad range of essential modern spectroscopy content from a single source rather than wading through hundreds of scattered journal articles

Far and Deep Ultraviolet Spectroscopy

Far  and Deep Ultraviolet Spectroscopy
Author: Yukihiro Ozaki,Satoshi Kawata
Publsiher: Springer
Total Pages: 174
Release: 2015-06-26
Genre: Science
ISBN: 9784431555490

Download Far and Deep Ultraviolet Spectroscopy Book in PDF, Epub and Kindle

This book is the first comprehensive work to be published on far-ultraviolet (FUV) and deep-ultraviolet (DUV) spectroscopy, subjects of keen interest because new areas of spectroscopy have been born in the FUV and DUV regions. For example, FUV spectroscopy in condensed matter has become possible due to the development of attenuated total reflection/FUV spectroscopy. As other examples, DUV surface-enhanced Raman scattering and DUV tip-enhanced Raman scattering have received great attention. Imaging by DUV spectroscopy has also become an area of interest. More recently, FUV and DUV spectroscopy have shown potential for applications in several fields including industry. All these topics are described in this book. Doctoral students and researchers in universities and national research institutes as well as researchers in various industries will find this volume highly useful.

Encyclopedia of Chemical Physics and Physical Chemistry

Encyclopedia of Chemical Physics and Physical Chemistry
Author: John H. Moore,Nicholas D. Spencer
Publsiher: CRC Press
Total Pages: 1161
Release: 2023-07-03
Genre: Science
ISBN: 9781003803294

Download Encyclopedia of Chemical Physics and Physical Chemistry Book in PDF, Epub and Kindle

The Encyclopedia of Physical Chemistry and Chemical Physics introduces possibly unfamiliar areas, explains important experimental and computational techniques, and describes modern endeavors. The encyclopedia quickly provides the basics, defines the scope of each subdiscipline, and indicates where to go for a more complete and detailed explanation. Particular attention has been paid to symbols and abbreviations to make this a user-friendly encyclopedia. Care has been taken to ensure that the reading level is suitable for the trained chemist or physicist. The encyclopedia is divided in three major sections: FUNDAMENTALS: the mechanics of atoms and molecules and their interactions, the macroscopic and statistical description of systems at equilibrium, and the basic ways of treating reacting systems. The contributions in this section assume a somewhat less sophisticated audience than the two subsequent sections. At least a portion of each article inevitably covers material that might also be found in a modern, undergraduate physical chemistry text. METHODS: the instrumentation and fundamental theory employed in the major spectroscopic techniques, the experimental means for characterizing materials, the instrumentation and basic theory employed in the study of chemical kinetics, and the computational techniques used to predict the static and dynamic properties of materials. APPLICATIONS: specific topics of current interest and intensive research. For the practicing physicist or chemist, this encyclopedia is the place to start when confronted with a new problem or when the techniques of an unfamiliar area might be exploited. For a graduate student in chemistry or physics, the encyclopedia gives a synopsis of the basics and an overview of the range of activities in which physical principles are applied to chemical problems. It will lead any of these groups to the salient points of a new field as rapidly as possible and gives pointers as to where to read about the topic in more detail.

Spectroscopy and Computation of Hydrogen BondedSystems

Spectroscopy and Computation of Hydrogen BondedSystems
Author: Marek J. Wójcik,Yukihiro Ozaki
Publsiher: John Wiley & Sons
Total Pages: 548
Release: 2023-03-27
Genre: Science
ISBN: 9783527349722

Download Spectroscopy and Computation of Hydrogen BondedSystems Book in PDF, Epub and Kindle

Comprehensive spectroscopic view of the state-of the-art in theoretical and experimental hydrogen bonding research Spectroscopy and Computation of Hydrogen-Bonded Systems includes diverse research efforts spanning the frontiers of hydrogen bonding as revealed through state-of-the-art spectroscopic and computational methods, covering a broad range of experimental and theoretical methodologies used to investigate and understand hydrogen bonding. The work explores the key quantitative relationships between fundamental vibrational frequencies and hydrogen-bond length/strength and provides an extensive reference for the advancement of scientific knowledge on hydrogen-bonded systems. Theoretical models of vibrational landscapes in hydrogen-bonded systems, as well as kindred studies designed to interpret intricate spectral features in gaseous complexes, liquids, crystals, ices, polymers, and nanocomposites, serve to elucidate the provenance of spectroscopic findings. Results of experimental and theoretical studies on multidimensional proton transfer are also presented. Edited by two highly qualified researchers in the field, sample topics covered in Spectroscopy and Computation of Hydrogen-Bonded Systems include: Quantum-mechanical treatments of tunneling-mediated pathways in enzyme catalysis and molecular-dynamics simulations of structure and dynamics in hydrogen-bonded systems Mechanisms of multiple proton-transfer pathways in hydrogen-bonded clusters and modern spectroscopic tools with synergistic quantum-chemical analyses Mechanistic investigations of deuterium kinetic isotope effects, ab initio path integral methods, and molecular-dynamics simulations Key relationships that exist between fundamental vibrational frequencies and hydrogen-bond length/strength Analogous spectroscopic and semi-empirical computational techniques examining larger hydrogen-bonded systems Reflecting the polymorphic nature of hydrogen bonding and bringing together the latest experimental and computational work in the field, Spectroscopy and Computation of Hydrogen-Bonded Systems is an essential resource for chemists and other scientists involved in projects or research that intersects with the topics covered within.