Theoretical foundation for large scale computations for nonlinear material behavior

Theoretical foundation for large scale computations for nonlinear material behavior
Author: S. Nemat-Nassar,R.J. Asaro,G.A. Hegemier
Publsiher: Springer Science & Business Media
Total Pages: 412
Release: 2012-12-06
Genre: Science
ISBN: 9789400962132

Download Theoretical foundation for large scale computations for nonlinear material behavior Book in PDF, Epub and Kindle

This book contains the proceedings of a workshop on the Theoretical Founda tion for Large-Scale Computations of Nonlinear Material Behavior, held under the auspices of the National Science Foundation (NSF) and the Defense Advance Re search Projects Agency (DARPA), at Northwestern University, October 24-26, 1983. The main objective of this workshop was to provide a forum for the exchange of information and views on major issues relating to the fundamentals of character izing the inelastic constitutive material behavior. Comments on the Aims of the Workshop, by Drs. William Snowden and Thomas Bache, pp. 1-5, outline reasons for holding this workshop, and provide further background. The format of the workshop was designed to optimize the interaction between researchers whose primary interest is material characterization and numerical analysts whose primary interest is the development and practical use of large computer codes. The program of the workshop and a list of the workshop partic ipants are found at the end of these proceedings.

Theoretical Foundation for Large scale Computations of Nonlinear Material Behavior

Theoretical Foundation for Large scale Computations of Nonlinear Material Behavior
Author: S. Nemat-Nasser,Robert J. Asaro,Gilbert A. Hegemeier
Publsiher: Unknown
Total Pages: 415
Release: 1984
Genre: Electronic Book
ISBN: OCLC:636474078

Download Theoretical Foundation for Large scale Computations of Nonlinear Material Behavior Book in PDF, Epub and Kindle

Plates and Shells

Plates and Shells
Author: Michel Fortin
Publsiher: American Mathematical Soc.
Total Pages: 292
Release: 1999-06-23
Genre: Technology & Engineering
ISBN: 0821873288

Download Plates and Shells Book in PDF, Epub and Kindle

This volume features the proceedings from the Summer Seminar of the Canadian Mathematical Society held at Universite Laval. The purpose of the seminar was to gather both mathematicians and engineers interested in the theory or application of plates and shells, or more generally, in the modelisation of thin structures. From this, it was hoped that a better understanding of the problem would emerge for both groups of professionals. New aspects from the mathematical point of view and new applications posing new challenges are reported. This volume offers a snapshot of the state of the art of this rapidly evolving topic.

Continuum Mechanics Volume I

Continuum Mechanics   Volume I
Author: José Merodio,Giuseppe Saccomandi
Publsiher: EOLSS Publications
Total Pages: 460
Release: 2011-11-30
Genre: Electronic Book
ISBN: 9781848263727

Download Continuum Mechanics Volume I Book in PDF, Epub and Kindle

The main objective of continuum mechanics is to predict the response of a body that is under the action of external and/or internal influences, i.e. to capture and describe different mechanisms associated with the motion of a body that is under the action of loading. A body in continuum mechanics is considered to be matter continuously distributed in space. Hence, no attention is given to the microscopic (atomic) structure of real materials although non-classical generalized theories of continuum mechanics are able to deal with the mesoscopic structure of matter (i.e. defects, cracks, dispersive lengths, ...). Matter occupies space in time and the response of a body in continuum mechanics is restricted to the Newtonian space-time of classical mechanics in this volume. Einstein’s theory of relativity is not considered. In the classical sense, loading is considered as any action that changes the motion of the body. This includes, for instance, a change in temperature or a force applied. By introducing the concept of configurational forces a load may also be considered as a force that drives a change in the material space, for example the opening of a crack. Continuum mechanics refers to field descriptions of phenomena that are usually modeled by partial differential equations and, from a mathematical point of view, require non-standard knowledge of non-simple technicalities. One purpose in this volume has been to present the different subjects in a self-contained way for a general audience. The organization of the volume is as follows. Mathematically, to predict the response of a body it is necessary to formulate boundary value problems governed by balance laws. The theme of the volume, that is an overview of the subject, has been written with this idea in mind for beginners in the topic. Chapter 1 is an introduction to continuum mechanics based on a one-dimensional framework in which, simultaneously, a more detailed organization of the chapters of this volume is given. A one-dimensional approach to continuum mechanics in some aspects maybe misleading since the analysis is oversimplified. Nevertheless, it allows us to introduce the subject through the early basic steps of the continuum analysis for a general audience. Chapters 3, 4 and 5 are devoted to the mathematical setting of continuum analysis: kinematics, balance laws and thermodynamics, respectively. Chapters 6 and 7 are devoted to constitutive equations. Chapters 8 and 9 deal with different issues in the context of linear elastostatics and linear elastodynamics and waves, respectively, for solids. Linear Elasticity is a classical and central theory of continuum mechanics. Chapter 10 deals with fluids while chapter 11 analyzes the coupled theory of thermoelasticity. Chapter 12 deals with nonlinear elasticity and its role in the continuum framework. Chapters 13 and 14 are dedicated to different applications of solid and fluid mechanics, respectively. The rest of the chapters involve some advanced topics. Chapter 15 is dedicated to turbulence, one of the main challenges in fluid mechanics. Chapter 16 deals with electro-magneto active materials (a coupled theory). Chapter 17 deals with specific ideas of soft matter and chapter 18 deals with configurational forces. In chapter 19, constitutive equations are introduced in a general (implicit) form. Well-posedness (existence, time of existence, uniqueness, continuity) of the equations of the mechanics of continua is an important topic which involves sophisticated mathematical machinery. Chapter 20 presents different analyses related to these topics. Continuum Mechanics is an interdisciplinary subject that attracts the attention of engineers, mathematicians, physicists, etc., working in many different disciplines from a purely scientific environment to industrial applications including biology, materials science, engineering, and many other subjects.

Spall Fracture

Spall Fracture
Author: Tarabay Antoun,Lynn Seaman,Donald R Curran,Gennady I. Kanel,Sergey V. Razorenov,Alexander V. Utkin
Publsiher: Springer Science & Business Media
Total Pages: 409
Release: 2006-04-06
Genre: Science
ISBN: 9780387215167

Download Spall Fracture Book in PDF, Epub and Kindle

Shock-induced dynamic fracture of solids is of practical importance in many areas of materials science, chemical physics, engineering, and geophysics. This book, by an international roster of authors, comprises a systematic account of the current state of research in the field, integrating the large amount of work done in the former Soviet Union with the work done in the West. Topics covered include: Wave propagation, experimental techniques and measurements, spallation of materials of different classes (metals, ceramics, glasses, polymers), constitutive models of fracture processes, and computer simulations.

The Behaviour of Nonlinear Vibrating Systems

The Behaviour of Nonlinear Vibrating Systems
Author: Wanda Szemplinska
Publsiher: Springer Science & Business Media
Total Pages: 370
Release: 1990-06-30
Genre: Technology & Engineering
ISBN: 0792303695

Download The Behaviour of Nonlinear Vibrating Systems Book in PDF, Epub and Kindle

The purpose of this book is to provide students, practicing engineers and scientists with a treatment of nonlinear phenomena occurring in physical systems. Although only mechanical models are used, the theory applies to all physical systems governed by the same equations, so that the book can be used to study nonlinear phenomena in other branches of engineering, such as electrical engineering and aerospace engineering, as well as in physics. The book consists of two volumes. Volume I is concerned with single degree-of-freedom systems and it presents the fundamental concepts of nonlinear analysis. Both analytical methods and computer simulations are included. The material is presented in such a manner that the book can be used as a graduate as well as an undergraduate textbook. Volume II deals with multi-degree-of-freedom systems. Following an introduc tion to linear systems, the volume presents fundamental concepts of geometric theory and stability of motion of general nonlinear systems, as well as a concise discussion of basic approximate methods for the response of such systems. The material represents a generalization of a series of papers on the vibration of nonlinear multi-degree-of-freedom systems, some of which were published by me and my associates during the period 1965 - 1983 and some are not yet published.

Computational Continuum Mechanics

Computational Continuum Mechanics
Author: Ahmed A. Shabana
Publsiher: John Wiley & Sons
Total Pages: 364
Release: 2018-02-20
Genre: Technology & Engineering
ISBN: 9781119293217

Download Computational Continuum Mechanics Book in PDF, Epub and Kindle

An updated and expanded edition of the popular guide to basic continuum mechanics and computational techniques This updated third edition of the popular reference covers state-of-the-art computational techniques for basic continuum mechanics modeling of both small and large deformations. Approaches to developing complex models are described in detail, and numerous examples are presented demonstrating how computational algorithms can be developed using basic continuum mechanics approaches. The integration of geometry and analysis for the study of the motion and behaviors of materials under varying conditions is an increasingly popular approach in continuum mechanics, and absolute nodal coordinate formulation (ANCF) is rapidly emerging as the best way to achieve that integration. At the same time, simulation software is undergoing significant changes which will lead to the seamless fusion of CAD, finite element, and multibody system computer codes in one computational environment. Computational Continuum Mechanics, Third Edition is the only book to provide in-depth coverage of the formulations required to achieve this integration. Provides detailed coverage of the absolute nodal coordinate formulation (ANCF), a popular new approach to the integration of geometry and analysis Provides detailed coverage of the floating frame of reference (FFR) formulation, a popular well-established approach for solving small deformation problems Supplies numerous examples of how complex models have been developed to solve an array of real-world problems Covers modeling of both small and large deformations in detail Demonstrates how to develop computational algorithms using basic continuum mechanics approaches Computational Continuum Mechanics, Third Edition is designed to function equally well as a text for advanced undergraduates and first-year graduate students and as a working reference for researchers, practicing engineers, and scientists working in computational mechanics, bio-mechanics, computational biology, multibody system dynamics, and other fields of science and engineering using the general continuum mechanics theory.

Computational Methods in Solid Mechanics

Computational Methods in Solid Mechanics
Author: A. Curnier
Publsiher: Springer Science & Business Media
Total Pages: 412
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 9789401111126

Download Computational Methods in Solid Mechanics Book in PDF, Epub and Kindle

This volume presents an introduction to the three numerical methods most commonly used in the mechanical analysis of deformable solids, viz. the finite element method (FEM), the linear iteration method (LIM), and the finite difference method (FDM). The book has been written from the point of view of simplicity and unity; its originality lies in the comparable emphasis given to the spatial, temporal and nonlinear dimensions of problem solving. This leads to a neat global algorithm. Chapter 1 addresses the problem of a one-dimensional bar, with emphasis being given to the virtual work principle. Chapters 2--4 present the three numerical methods. Although the discussion relates to a one-dimensional model, the formalism used is extendable to two-dimensional situations. Chapter 5 is devoted to a detailed discussion of the compact combination of the three methods, and contains several sections concerning their computer implementation. Finally, Chapter 6 gives a generalization to two and three dimensions of both the mechanical and numerical aspects. For graduate students and researchers whose work involves the theory and application of computational solid mechanics.