Thinking Machines

Thinking Machines
Author: Shigeyuki Takano
Publsiher: Academic Press
Total Pages: 324
Release: 2021-03-27
Genre: Computers
ISBN: 9780128182802

Download Thinking Machines Book in PDF, Epub and Kindle

Thinking Machines: Machine Learning and Its Hardware Implementation covers the theory and application of machine learning, neuromorphic computing and neural networks. This is the first book that focuses on machine learning accelerators and hardware development for machine learning. It presents not only a summary of the latest trends and examples of machine learning hardware and basic knowledge of machine learning in general, but also the main issues involved in its implementation. Readers will learn what is required for the design of machine learning hardware for neuromorphic computing and/or neural networks. This is a recommended book for those who have basic knowledge of machine learning or those who want to learn more about the current trends of machine learning. Presents a clear understanding of various available machine learning hardware accelerator solutions that can be applied to selected machine learning algorithms Offers key insights into the development of hardware, from algorithms, software, logic circuits, to hardware accelerators Introduces the baseline characteristics of deep neural network models that should be treated by hardware as well Presents readers with a thorough review of past research and products, explaining how to design through ASIC and FPGA approaches for target machine learning models Surveys current trends and models in neuromorphic computing and neural network hardware architectures Outlines the strategy for advanced hardware development through the example of deep learning accelerators

Thinking Machines

Thinking Machines
Author: Luke Dormehl
Publsiher: Penguin
Total Pages: 288
Release: 2017-03-07
Genre: Computers
ISBN: 9781524704414

Download Thinking Machines Book in PDF, Epub and Kindle

A fascinating look at Artificial Intelligence, from its humble Cold War beginnings to the dazzling future that is just around the corner. When most of us think about Artificial Intelligence, our minds go straight to cyborgs, robots, and sci-fi thrillers where machines take over the world. But the truth is that Artificial Intelligence is already among us. It exists in our smartphones, fitness trackers, and refrigerators that tell us when the milk will expire. In some ways, the future people dreamed of at the World's Fair in the 1960s is already here. We're teaching our machines how to think like humans, and they're learning at an incredible rate. In Thinking Machines, technology journalist Luke Dormehl takes you through the history of AI and how it makes up the foundations of the machines that think for us today. Furthermore, Dormehl speculates on the incredible--and possibly terrifying--future that's much closer than many would imagine. This remarkable book will invite you to marvel at what now seems commonplace and to dream about a future in which the scope of humanity may need to broaden itself to include intelligent machines.

Machine Learning in Healthcare and Security

Machine Learning in Healthcare and Security
Author: Prashant Pranav,Archana Patel,Sarika Jain
Publsiher: CRC Press
Total Pages: 225
Release: 2024-01-19
Genre: Computers
ISBN: 9781003825883

Download Machine Learning in Healthcare and Security Book in PDF, Epub and Kindle

This book brings together a blend of different areas of machine learning and recent advances in the area. From the use of ML in healthcare to security, this book encompasses several areas related to ML while keeping a check on traditional ML algorithms. Machine Learning in Healthcare and Security: Advances, Obstacles, and Solutions describes the predictive analysis and forecasting techniques in different emerging and classical areas using the approaches of ML and AI. It discusses the application of ML and AI in medical diagnostic systems and deals with the security prevention aspects of ML and how it can be used to tackle various emerging security issues. This book also focuses on NLP and understanding the techniques, obstacles, and possible solutions. This is a valuable reference resource for researchers and postgraduate students in healthcare systems engineering, computer science, cyber-security, information technology, and applied mathematics.

Feedforward Neural Networks

Feedforward Neural Networks
Author: Fouad Sabry
Publsiher: One Billion Knowledgeable
Total Pages: 142
Release: 2023-06-24
Genre: Computers
ISBN: PKEY:6610000469802

Download Feedforward Neural Networks Book in PDF, Epub and Kindle

What Is Feedforward Neural Networks A feedforward neural network, often known as a FNN, is a type of artificial neural network that does not have connections that form a cycle between its nodes. Therefore, it is distinct from its offspring, which are known as recurrent neural networks. How You Will Benefit (I) Insights, and validations about the following topics: Chapter 1: Feedforward neural network Chapter 2: Artificial neural network Chapter 3: Perceptron Chapter 4: Artificial neuron Chapter 5: Multilayer perceptron Chapter 6: Delta rule Chapter 7: Backpropagation Chapter 8: Types of artificial neural networks Chapter 9: Learning rule Chapter 10: Mathematics of artificial neural networks (II) Answering the public top questions about feedforward neural networks. (III) Real world examples for the usage of feedforward neural networks in many fields. Who This Book Is For Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of feedforward neural networks. What Is Artificial Intelligence Series The Artificial Intelligence eBook series provides comprehensive coverage in over 200 topics. Each ebook covers a specific Artificial Intelligence topic in depth, written by experts in the field. The series aims to give readers a thorough understanding of the concepts, techniques, history and applications of artificial intelligence. Topics covered include machine learning, deep learning, neural networks, computer vision, natural language processing, robotics, ethics and more. The ebooks are written for professionals, students, and anyone interested in learning about the latest developments in this rapidly advancing field. The Artificial Intelligence eBook series provides an in-depth yet accessible exploration, from the fundamental concepts to the state-of-the-art research. With over 200 volumes, readers gain a thorough grounding in all aspects of Artificial Intelligence. The ebooks are designed to build knowledge systematically, with later volumes building on the foundations laid by earlier ones. This comprehensive series is an indispensable resource for anyone seeking to develop expertise in artificial intelligence.

Turing s Connectionism

Turing   s Connectionism
Author: Christof Teuscher
Publsiher: Springer Science & Business Media
Total Pages: 215
Release: 2012-12-06
Genre: Computers
ISBN: 9781447101611

Download Turing s Connectionism Book in PDF, Epub and Kindle

Christof Teuscher revives, analyzes, and simulates Turing's ideas, applying them to different types of problems, and building and training Turing's machines using evolutionary algorithms. In a little known paper entitled 'Intelligent Machinery' Turing investigated connectionist networks, but his work was dismissed as a 'schoolboy essay'and it was left unpublished until 1968, 14 years after his death. This is not a book about today's (classical) neural networks, but about the neuron network-like structures proposed by Turing. One of its novel features is that it actually goes beyond Turing's ideas by proposing new machines. The book also contains a Foreward by B. Jack Copeland and D. Proudfoot.

The Promise of Neural Networks

The Promise of Neural Networks
Author: J.G. Taylor
Publsiher: Springer Science & Business Media
Total Pages: 159
Release: 2012-12-06
Genre: Computers
ISBN: 9781447103950

Download The Promise of Neural Networks Book in PDF, Epub and Kindle

This book is the product of a 15-month intensive investigation of the European artificial network scene, together with a view of the broader framework of the subject in a world context. It could not have been completed in such a remarkably short time, and so effectively, without the dedicated efforts of Louise Turner, the DEANNA secretary, and Geoff Chappell, the DEANNA researcher, at the Centre for Neural Networks, King's College, London. I would like to take this opportunity to thank them for their heroic efforts. I would also like to thank my colleagues in the Centre and in the Mathematics Department, especially Mark Plumbley, Michael Reiss and Trevor Clarkson for all their help and encouragement, Denise Gorse of University College London, for allowing use of her lecture notes as a basis for the tutorial and the DEANNA partners for the part they played. Finally I would like to acknowledge the European Community support, and especially Mike Coyle for his trenchant comments during the carrying out of the work. March 1993 J. G. Taylor CONTENTS PART I: SETTING THE SCENE Chapter 1: DEANNA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1 . 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 . 2 The Geographical Dimension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1 1. 3 The Industrial Dimension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1 . 4 The Plan for Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Chapter 2: Neural Net Demonstrators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2. 1 The Status of Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2. 2 Reasons for the Employment of Neural Networks . . . . . . . . . . . . . . . . . . . 9 2. 3 Neural Network Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2. 4 Areas of Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2. 5 Typical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Efficient Processing of Deep Neural Networks

Efficient Processing of Deep Neural Networks
Author: Vivienne Sze,Yu-Hsin Chen,Tien-Ju Yang,Joel S. Emer
Publsiher: Morgan & Claypool Publishers
Total Pages: 354
Release: 2020-06-24
Genre: Computers
ISBN: 9781681738321

Download Efficient Processing of Deep Neural Networks Book in PDF, Epub and Kindle

This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve metrics—such as energy-efficiency, throughput, and latency—without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems. The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of the DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as a formalization and organization of key concepts from contemporary works that provides insights that may spark new ideas.

How Smart Machines Think

How Smart Machines Think
Author: Sean Gerrish
Publsiher: MIT Press
Total Pages: 313
Release: 2019-10-22
Genre: Computers
ISBN: 9780262537971

Download How Smart Machines Think Book in PDF, Epub and Kindle

Everything you want to know about the breakthroughs in AI technology, machine learning, and deep learning—as seen in self-driving cars, Netflix recommendations, and more. The future is here: Self-driving cars are on the streets, an algorithm gives you movie and TV recommendations, IBM’s Watson triumphed on Jeopardy over puny human brains, computer programs can be trained to play Atari games. But how do all these things work? In this book, Sean Gerrish offers an engaging and accessible overview of the breakthroughs in artificial intelligence and machine learning that have made today’s machines so smart. Gerrish outlines some of the key ideas that enable intelligent machines to perceive and interact with the world. He describes the software architecture that allows self-driving cars to stay on the road and to navigate crowded urban environments; the million-dollar Netflix competition for a better recommendation engine (which had an unexpected ending); and how programmers trained computers to perform certain behaviors by offering them treats, as if they were training a dog. He explains how artificial neural networks enable computers to perceive the world—and to play Atari video games better than humans. He explains Watson’s famous victory on Jeopardy, and he looks at how computers play games, describing AlphaGo and Deep Blue, which beat reigning world champions at the strategy games of Go and chess. Computers have not yet mastered everything, however; Gerrish outlines the difficulties in creating intelligent agents that can successfully play video games like StarCraft that have evaded solution—at least for now. Gerrish weaves the stories behind these breakthroughs into the narrative, introducing readers to many of the researchers involved, and keeping technical details to a minimum. Science and technology buffs will find this book an essential guide to a future in which machines can outsmart people.