Urine Diversion One Step Towards Sustainable Sanitation

Urine Diversion  One Step Towards Sustainable Sanitation
Author: Anonim
Publsiher: EcoSanRes Programme
Total Pages: 76
Release: 2006
Genre: Electronic Book
ISBN: 9789197523899

Download Urine Diversion One Step Towards Sustainable Sanitation Book in PDF, Epub and Kindle

Interdisciplinary and Transdisciplinary Failures

Interdisciplinary and Transdisciplinary Failures
Author: Dena Fam,Michael O'Rourke
Publsiher: Routledge
Total Pages: 288
Release: 2020-11-01
Genre: Social Science
ISBN: 9780429552410

Download Interdisciplinary and Transdisciplinary Failures Book in PDF, Epub and Kindle

Unlike other volumes in the current literature, this book provides insight for interdisciplinary and transdisciplinary researchers and practitioners on what doesn’t work. Documenting detailed case studies of project failure matters, not only as an illustration of experienced challenges but also as projects do not always follow step-by-step protocols of preconceived and theorised processes. Bookended by a framing introduction by the editors and a conclusion written by Julie Thompson Klein, each chapter ends with a reflexive section that synthesizes lessons learned and key take-away points for the reader. Drawing on a wide range of international case studies and with a strong environmental thread throughout, the book reveals a range of failure scenarios for interdisciplinary and transdisciplinary projects, including: • Projects that did not get off the ground; • Projects that did not have the correct personnel for specified objectives; • Projects that did not reach their original objectives but met other objectives; • Projects that failed to anticipate important differences among collaborators. Illustrating causal links in real life projects, this volume will be of significant relevance to scholars and practitioners looking to overcome the challenges of conducting interdisciplinary and transdisciplinary research.

Regenerative Sanitation

Regenerative Sanitation
Author: Thammarat Koottatep,Peter Emmanuel Cookey,Chongrak Polprasert
Publsiher: IWA Publishing
Total Pages: 370
Release: 2019-02-15
Genre: Science
ISBN: 9781780409672

Download Regenerative Sanitation Book in PDF, Epub and Kindle

This book proposes Regenerative Sanitation as the next era of sanitation management and attempts to provide a foundation for the study of sanitation on the premise that sanitation is a complex and dynamic system that comprises of social-ecological, technological and resource systems. The preconception is that sanitation will deliver maximal benefits to society only when there exists a cyclical integration of the three subsystems to enable appropriate linkages between ‘technological design’ and the ‘delivery platform’ so as to achieve optimal and sustained sani-solutions. It also calls for the rethinking of sanitation to change the narrative towards more progressive trajectories such as resource recovery and reuse rather than just amelioration. It explores the contributions to food security, livelihood support, urban regeneration, rural development and even local economies. A new paradigm, theory and ten principles for ensuring practical and effective sanitation solutions and management is presented. In addition is a unique conceptual framework applicable to both developed and developing countries, and to all stages, processes and cycles of delivering sanitation solutions that could critically evaluate, analyse and provide credible, adequate and appropriate sanitation solutions. All of which culminates in a strategic and practical application platform called ‘Sanitation 4.0’ that advocates for total rejuvenation and comprehensive overhaul with eight key strategic considerations for the implementation. Regenerative Sanitation: A New Paradigm For Sanitation 4.0 is inter and trans- disciplinary and encourages collaboration between engineers, scientists, technologists, social scientists and others to provide effective and practical user-centred solutions. It includes relevant case studies, examples, exercise and future research recommendations. It is written as both a textbook for researchers and students as well as a practitioners’ guide for policymakers and professionals.

Water Reclamation and Sustainability

Water Reclamation and Sustainability
Author: Satinder Ahuja
Publsiher: Elsevier
Total Pages: 495
Release: 2014-05-15
Genre: Technology & Engineering
ISBN: 9780124165762

Download Water Reclamation and Sustainability Book in PDF, Epub and Kindle

Many hydrological, geochemical, and biological processes associated with water reclamation and reuse are poorly understood. In particular, the occurrence and effects of trace organic and inorganic contaminants commonly found in reclaimed water necessitates careful analysis and treatment prior to safe reuse. Water Reclamation and Sustainability is a practical guide to the latest water reclamation, recycling, and reuse theory and practice. From water quality criteria and regulations to advanced techniques and implementation issues, this book offers scientists a toolkit for developing safe and successful reuse strategies. With a focus on specific contaminant removal techniques, this book comprehensively covers the full range of potential inorganic/organic contaminating compounds and highlights proven remediation methods. Socioeconomic implications related to current and future water shortages are also addressed, underscoring the many positive benefits of sustainable water resource management. Offers pragmatic solutions to global water shortages Provides an overview of the latest analytical techniques for water monitoring Reviews current remediation efforts Covers innovative technologies for green, gray, brown and black water reclamation and reuse

Introduction to Development Engineering

Introduction to Development Engineering
Author: Temina Madon,Ashok J. Gadgil,Richard Anderson,Lorenzo Casaburi,Kenneth Lee,Arman Rezaee
Publsiher: Springer Nature
Total Pages: 655
Release: 2022-09-08
Genre: Technology & Engineering
ISBN: 9783030860653

Download Introduction to Development Engineering Book in PDF, Epub and Kindle

This open access textbook introduces the emerging field of Development Engineering and its constituent theories, methods, and applications. It is both a teaching text for students and a resource for researchers and practitioners engaged in the design and scaling of technologies for low-resource communities. The scope is broad, ranging from the development of mobile applications for low-literacy users to hardware and software solutions for providing electricity and water in remote settings. It is also highly interdisciplinary, drawing on methods and theory from the social sciences as well as engineering and the natural sciences. The opening section reviews the history of “technology-for-development” research, and presents a framework that formalizes this body of work and begins its transformation into an academic discipline. It identifies common challenges in development and explains the book’s iterative approach of “innovation, implementation, evaluation, adaptation.” Each of the next six thematic sections focuses on a different sector: energy and environment; market performance; education and labor; water, sanitation and health; digital governance; and connectivity. These thematic sections contain case studies from landmark research that directly integrates engineering innovation with technically rigorous methods from the social sciences. Each case study describes the design, evaluation, and/or scaling of a technology in the field and follows a single form, with common elements and discussion questions, to create continuity and pedagogical consistency. Together, they highlight successful solutions to development challenges, while also analyzing the rarely discussed failures. The book concludes by reiterating the core principles of development engineering illustrated in the case studies, highlighting common challenges that engineers and scientists will face in designing technology interventions that sustainably accelerate economic development. Development Engineering provides, for the first time, a coherent intellectual framework for attacking the challenges of poverty and global climate change through the design of better technologies. It offers the rigorous discipline needed to channel the energy of a new generation of scientists and engineers toward advancing social justice and improved living conditions in low-resource communities around the world.

Challenges of Sustainable Development in Poland

Challenges of Sustainable Development in Poland
Author: Jakub Kronenberg
Publsiher: Fundacja Sendzimira
Total Pages: 420
Release: 2010
Genre: Environmental policy
ISBN: 9788362168019

Download Challenges of Sustainable Development in Poland Book in PDF, Epub and Kindle

This book is at once a guide for sustainable development professionals and a handbook for those interested in further studies on sustainability. It not only explains and exemplifies the issues of sustainability discussed herein, but it also offers a resource for practitioners in business, local authorities, non-governmental organisations and indeed individuals, wanting to undertake activities directed towards sustainable development. This book consists of 15 chapters supplemented with descriptions of sustainability tools and related case studies in Poland. These case studies are particularly useful for both teaching and practical application. In preparing this book, the authors have applied their extensive practical and research experience in this

Sustainable Phosphorus Management

Sustainable Phosphorus Management
Author: Roland W. Scholz,Amit H. Roy,Fridolin S. Brand,Deborah T. Hellums,Andrea E. Ulrich
Publsiher: Springer Science & Business Media
Total Pages: 322
Release: 2014-03-12
Genre: Science
ISBN: 9789400772502

Download Sustainable Phosphorus Management Book in PDF, Epub and Kindle

This book describes a pathway for sustainable phosphorus management via the Global Transdisciplinary Processes for Sustainable Phosphorus Management project (Global TraPs). Global TraPs is a multi-stakeholder forum in which scientists from a variety of disciplines join with key actors in practice to jointly identify critical questions and to articulate what new knowledge, technologies and policy processes are needed to ensure that future phosphorus use is sustainable, improves food security and environmental quality and provides benefits for the poor. The book offers insight into economic scarcity and identifies options to improve efficiency and reduce environmental impacts of anthropogenic phosphorus flows at all stages of the supply and use chain.

Source Separation and Decentralization for Wastewater Management

Source Separation and Decentralization for Wastewater Management
Author: Tove A. Larsen,Kai M. Udert,Judit Lienert
Publsiher: IWA Publishing
Total Pages: 502
Release: 2013-02-01
Genre: Science
ISBN: 9781843393481

Download Source Separation and Decentralization for Wastewater Management Book in PDF, Epub and Kindle

Is sewer-based wastewater treatment really the optimal technical solution in urban water management? This paradigm is increasingly being questioned. Growing water scarcity and the insight that water will be an important limiting factor for the quality of urban life are main drivers for new approaches in wastewater management. Source Separation and Decentralization for Wastewater Management sets up a comprehensive view of the resources involved in urban water management. It explores the potential of source separation and decentralization to provide viable alternatives to sewer-based urban water management. During the 1990s, several research groups started working on source-separating technologies for wastewater treatment. Source separation was not new, but had only been propagated as a cheap and environmentally friendly technology for the poor. The novelty was the discussion whether source separation could be a sustainable alternative to existing end-of-pipe systems, even in urban areas and industrialized countries. Since then, sustainable resource management and many different source-separating technologies have been investigated. The theoretical framework and also possible technologies have now developed to a more mature state. At the same time, many interesting technologies to process combined or concentrated wastewaters have evolved, which are equally suited for the treatment of source-separated domestic wastewater. The book presents a comprehensive view of the state of the art of source separation and decentralization. It discusses the technical possibilities and practical experience with source separation in different countries around the world. The area is in rapid development, but many of the fundamental insights presented in this book will stay valid. Source Separation and Decentralization for Wastewater Management is intended for all professionals and researchers interested in wastewater management, whether or not they are familiar with source separation. Editors: Tove A. Larsen, Kai M. Udert and Judit Lienert, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Switzerland. Contributors: Yuval Alfiya, Technion - Israel Institute of Technology, Faculty of Civil and Environmental Engineering; Prof. Dr. M. Bruce Beck, University of Georgia, Warnell School of Forestry and Natural Resources; Dr. Christian Binz, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Innovation Research in Utility Sectors (Cirus); Prof. em. Dr. Markus Boller, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Urban Water Management (SWW); Prof. Dr. Eran Friedler, Technion – Israel Institute of Technology, Faculty of Civil and Environmental Engineering; Zenah Bradford-Hartke, The University of New South Wales, School of Chemical Engineering and UNESCO Centre for Membrane Science and Technology; Dr. Shelley Brown-Malker, Very Small Particle Company Ltd; Bert Bundervoet, Ghent University, Laboratory Microbial Ecology and Technology (LabMET); Prof. Dr. David Butler, University of Exeter, Centre for Water Systems; Dr. Christopher A. Buzie, Hamburg University of Technology, Institute of Wastewater Management and Water Protection; Dr. Dana Cordell, University of Technology, Sydney (UTS), Institute for Sustainable Futures (ISF); Dr. Vasileios Diamantis, Democritus University of Thrace, Department of Environmental Engineering; Prof. Dr. Jan Willem Erisman, Louis Bolk Institute; VU University Amsterdam, Department of Earth Sciences; Barbara Evans, University of Leeds, School of Civil Engineering; Prof. Dr. Malin Falkenmark, Stockholm International Water Institute; Dr. Ted Gardner, Central Queensland University, Institute for Resource Industries and Sustainability; Dr. Heiko Gebauer, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Innovation Research in Utility Sectors (Cirus); Prof. em. Dr. Willi Gujer, Swiss Federal Institute of Technology Zürich (ETHZ), Department of Civil, Environmental and Geomatic Engineering (BAUG); Prof. Dr. Bruce Jefferson, Cranfield University, Cranfield Water Science Institute; Prof. Dr. Paul Jeffrey, Cranfield University, Cranfield Water Science Institute; Sarina Jenni, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Prof. Dr. Håkan Jönsson, SLU - Swedish University of Agricultural Sciences, Department of Energy and Technology; Prof. Dr. Ïsik Kabdasli, Ïstanbul Technical University, Civil Engineering Faculty; Prof. Dr. Jörg Keller, The University of Queensland, Advanced Water Management Centre (AWMC); Prof. Dr. Klaus Kömmerer, Leuphana Universität Lüneburg, Institute of Sustainable and Environmental Chemistry; Dr. Katarzyna Kujawa-Roeleveld, Wageningen University, Agrotechnology and Food Sciences Group; Dr. Tove A. Larsen, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Urban Water Management (SWW); Michele Laureni, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Prof. Dr. Gregory Leslie, The University of New South Wales, School of Chemical Engineering and UNESCO Centre for Membrane Science and Technology; Dr. Harold Leverenz, University of California at Davis, Department of Civil and Environmental Engineering; Dr. Judit Lienert, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Social Sciences (ESS); Prof. Dr. Jürg Londong, Bauhaus-Universität Weimar, Department of Urban Water Management and Sanitation; Dr. Christoph Lüthi, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Water and Sanitation in Developing Countries (Sandec); Prof. Dr. Max Maurer, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Urban Water Management (SWW); Swiss Federal Institute of Technology Zürich (ETHZ), Department of Civil, Environmental and Geomatic Engineering; Prof. em. Dr. Gustaf Olsson, Lund University, Department of Measurement Technology and Industrial Electrical Engineering (MIE); Prof. Dr. Ralf Otterpohl, Hamburg University of Technology, Institute of Wastewater Management and Water Protection; Dr. Bert Palsma, STOWA, Dutch Foundation for Applied Water Research; Dr. Arne R. Panesar, Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH; Prof. Dr. Bruce E. Rittmann, Arizona State University, Swette Center for Environmental Biotechnology; Prof. Dr. Hansruedi Siegrist, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Dr. Ashok Sharma, Commonwealth Scientific and Industrial Research Organisation, Australia, Land and Water Division; Prof. Dr. Thor Axel Stenström, Stockholm Environment Institute, Bioresources Group; Norwegian University of Life Sciences, Department of Mathematical Science and Technology; Dr. Eckhard Störmer, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Innovation Research in Utility Sectors (Cirus); Bjartur Swart, STOWA, Dutch Foundation for Applied Water Research; MWH North Europe; Prof. em. Dr. George Tchobanoglous, University of California at Davis, Department of Civil and Environmental Engineering; Elizabeth Tilley, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Water and Sanitation in Developing Countries (Sandec); Swiss Federal Institute of Technology Zürich (ETHZ), Centre for Development and Cooperation (NADEL); Prof. Dr. Bernhard Truffer, Eawag, Swiss Federal Institute of Aquatic Science and Technology; Innovation Research in Utility Sectors (Cirus); Prof. Dr. Olcay Tünay, Ïstanbul Technical University, Civil Engineering Faculty; Dr. Kai M. Udert, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Prof. em. Dr. Willy Verstraete, Ghent University, Laboratory Microbial Ecology and Technology (LabMET); Prof. Dr. Björn Vinnerås, SLU - Swedish University of Agricultural Sciences, Department of Energy and Technology; Prof. Dr. Urs von Gunten, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water (W+T); Ecole Polytechnique Fédérale de Lausanne (EPFL),School of Architecture, Civil and Environmental Engineering (ENAC); Prof. em. Dr. Peter A. Wilderer, Technische Universität München, Institute for Advanced Study; Prof. Dr. Jun Xia, Chinese Academy of Sciences (CAS), Center for Water Resources Research and Key Laboratory of Water Cycle and Related Surface Processes; Prof. Dr. Grietje Zeeman, Wageningen University, Agrotechnology and Food Sciences Group