Verification of Computer Codes in Computational Science and Engineering

Verification of Computer Codes in Computational Science and Engineering
Author: Patrick Knupp,Kambiz Salari
Publsiher: CRC Press
Total Pages: 161
Release: 2002-10-29
Genre: Computers
ISBN: 9781420035421

Download Verification of Computer Codes in Computational Science and Engineering Book in PDF, Epub and Kindle

How can one be assured that computer codes that solve differential equations are correct? Standard practice using benchmark testing no longer provides full coverage because today's production codes solve more complex equations using more powerful algorithms. By verifying the order-of-accuracy of the numerical algorithm implemented in the code, one can detect most any coding mistake that would prevent correct solutions from being computed. Verification of Computer Codes in Computational Science and Engineering sets forth a powerful alternative called OVMSP: Order-Verification via the Manufactured Solution Procedure. This procedure has two primary components: using the Method of Manufactured Exact Solutions to create analytic solutions to the fully-general differential equations solved by the code and using grid convergence studies to confirm the order-of-accuracy. The authors present a step-by-step procedural guide to OVMSP implementation and demonstrate its effectiveness. Properly implemented, OVMSP offers an exciting opportunity to identify virtually all coding 'bugs' that prevent correct solution of the governing partial differential equations. Verification of Computer Codes in Computational Science and Engineering shows you how this can be done. The treatment is clear, concise, and suitable both for developers of production quality simulation software and as a reference for computational science and engineering professionals.

Handbook of Research on Computational Science and Engineering Theory and Practice

Handbook of Research on Computational Science and Engineering  Theory and Practice
Author: Leng, J.
Publsiher: IGI Global
Total Pages: 701
Release: 2011-10-31
Genre: Technology & Engineering
ISBN: 9781613501177

Download Handbook of Research on Computational Science and Engineering Theory and Practice Book in PDF, Epub and Kindle

By using computer simulations in research and development, computational science and engineering (CSE) allows empirical inquiry where traditional experimentation and methods of inquiry are difficult, inefficient, or prohibitively expensive. The Handbook of Research on Computational Science and Engineering: Theory and Practice is a reference for interested researchers and decision-makers who want a timely introduction to the possibilities in CSE to advance their ongoing research and applications or to discover new resources and cutting edge developments. Rather than reporting results obtained using CSE models, this comprehensive survey captures the architecture of the cross-disciplinary field, explores the long term implications of technology choices, alerts readers to the hurdles facing CSE, and identifies trends in future development.

Verification and Validation in Scientific Computing

Verification and Validation in Scientific Computing
Author: William L. Oberkampf,Christopher J. Roy
Publsiher: Cambridge University Press
Total Pages: 782
Release: 2010-10-14
Genre: Computers
ISBN: 9781139491761

Download Verification and Validation in Scientific Computing Book in PDF, Epub and Kindle

Advances in scientific computing have made modelling and simulation an important part of the decision-making process in engineering, science, and public policy. This book provides a comprehensive and systematic development of the basic concepts, principles, and procedures for verification and validation of models and simulations. The emphasis is placed on models that are described by partial differential and integral equations and the simulations that result from their numerical solution. The methods described can be applied to a wide range of technical fields, from the physical sciences, engineering and technology and industry, through to environmental regulations and safety, product and plant safety, financial investing, and governmental regulations. This book will be genuinely welcomed by researchers, practitioners, and decision makers in a broad range of fields, who seek to improve the credibility and reliability of simulation results. It will also be appropriate either for university courses or for independent study.

Uncertainty Quantification and Predictive Computational Science

Uncertainty Quantification and Predictive Computational Science
Author: Ryan G. McClarren
Publsiher: Springer
Total Pages: 345
Release: 2018-11-23
Genre: Science
ISBN: 9783319995250

Download Uncertainty Quantification and Predictive Computational Science Book in PDF, Epub and Kindle

This textbook teaches the essential background and skills for understanding and quantifying uncertainties in a computational simulation, and for predicting the behavior of a system under those uncertainties. It addresses a critical knowledge gap in the widespread adoption of simulation in high-consequence decision-making throughout the engineering and physical sciences. Constructing sophisticated techniques for prediction from basic building blocks, the book first reviews the fundamentals that underpin later topics of the book including probability, sampling, and Bayesian statistics. Part II focuses on applying Local Sensitivity Analysis to apportion uncertainty in the model outputs to sources of uncertainty in its inputs. Part III demonstrates techniques for quantifying the impact of parametric uncertainties on a problem, specifically how input uncertainties affect outputs. The final section covers techniques for applying uncertainty quantification to make predictions under uncertainty, including treatment of epistemic uncertainties. It presents the theory and practice of predicting the behavior of a system based on the aggregation of data from simulation, theory, and experiment. The text focuses on simulations based on the solution of systems of partial differential equations and includes in-depth coverage of Monte Carlo methods, basic design of computer experiments, as well as regularized statistical techniques. Code references, in python, appear throughout the text and online as executable code, enabling readers to perform the analysis under discussion. Worked examples from realistic, model problems help readers understand the mechanics of applying the methods. Each chapter ends with several assignable problems. Uncertainty Quantification and Predictive Computational Science fills the growing need for a classroom text for senior undergraduate and early-career graduate students in the engineering and physical sciences and supports independent study by researchers and professionals who must include uncertainty quantification and predictive science in the simulations they develop and/or perform.

Verification and Validation in Computational Science and Engineering

Verification and Validation in Computational Science and Engineering
Author: Patrick J. Roache
Publsiher: Unknown
Total Pages: 0
Release: 1998
Genre: Algorithms
ISBN: 0913478083

Download Verification and Validation in Computational Science and Engineering Book in PDF, Epub and Kindle

Computer Simulation Validation

Computer Simulation Validation
Author: Claus Beisbart,Nicole J. Saam
Publsiher: Springer
Total Pages: 1074
Release: 2019-04-09
Genre: Computers
ISBN: 9783319707662

Download Computer Simulation Validation Book in PDF, Epub and Kindle

This unique volume introduces and discusses the methods of validating computer simulations in scientific research. The core concepts, strategies, and techniques of validation are explained by an international team of pre-eminent authorities, drawing on expertise from various fields ranging from engineering and the physical sciences to the social sciences and history. The work also offers new and original philosophical perspectives on the validation of simulations. Topics and features: introduces the fundamental concepts and principles related to the validation of computer simulations, and examines philosophical frameworks for thinking about validation; provides an overview of the various strategies and techniques available for validating simulations, as well as the preparatory steps that have to be taken prior to validation; describes commonly used reference points and mathematical frameworks applicable to simulation validation; reviews the legal prescriptions, and the administrative and procedural activities related to simulation validation; presents examples of best practice that demonstrate how methods of validation are applied in various disciplines and with different types of simulation models; covers important practical challenges faced by simulation scientists when applying validation methods and techniques; offers a selection of general philosophical reflections that explore the significance of validation from a broader perspective. This truly interdisciplinary handbook will appeal to a broad audience, from professional scientists spanning all natural and social sciences, to young scholars new to research with computer simulations. Philosophers of science, and methodologists seeking to increase their understanding of simulation validation, will also find much to benefit from in the text.

Software Engineering for Science

Software Engineering for Science
Author: Jeffrey C. Carver,Neil P. Chue Hong,George K. Thiruvathukal
Publsiher: CRC Press
Total Pages: 296
Release: 2016-11-03
Genre: Computers
ISBN: 9781315351926

Download Software Engineering for Science Book in PDF, Epub and Kindle

Software Engineering for Science provides an in-depth collection of peer-reviewed chapters that describe experiences with applying software engineering practices to the development of scientific software. It provides a better understanding of how software engineering is and should be practiced, and which software engineering practices are effective for scientific software. The book starts with a detailed overview of the Scientific Software Lifecycle, and a general overview of the scientific software development process. It highlights key issues commonly arising during scientific software development, as well as solutions to these problems. The second part of the book provides examples of the use of testing in scientific software development, including key issues and challenges. The chapters then describe solutions and case studies aimed at applying testing to scientific software development efforts. The final part of the book provides examples of applying software engineering techniques to scientific software, including not only computational modeling, but also software for data management and analysis. The authors describe their experiences and lessons learned from developing complex scientific software in different domains. About the Editors Jeffrey Carver is an Associate Professor in the Department of Computer Science at the University of Alabama. He is one of the primary organizers of the workshop series on Software Engineering for Science (http://www.SE4Science.org/workshops). Neil P. Chue Hong is Director of the Software Sustainability Institute at the University of Edinburgh. His research interests include barriers and incentives in research software ecosystems and the role of software as a research object. George K. Thiruvathukal is Professor of Computer Science at Loyola University Chicago and Visiting Faculty at Argonne National Laboratory. His current research is focused on software metrics in open source mathematical and scientific software.

Software Design and Development Concepts Methodologies Tools and Applications

Software Design and Development  Concepts  Methodologies  Tools  and Applications
Author: Management Association, Information Resources
Publsiher: IGI Global
Total Pages: 2225
Release: 2013-07-31
Genre: Computers
ISBN: 9781466643024

Download Software Design and Development Concepts Methodologies Tools and Applications Book in PDF, Epub and Kindle

Innovative tools and techniques for the development and design of software systems are essential to the problem solving and planning of software solutions. Software Design and Development: Concepts, Methodologies, Tools, and Applications brings together the best practices of theory and implementation in the development of software systems. This reference source is essential for researchers, engineers, practitioners, and scholars seeking the latest knowledge on the techniques, applications, and methodologies for the design and development of software systems.