Wave Propagation in Drilling Well Logging and Reservoir Applications

Wave Propagation in Drilling  Well Logging and Reservoir Applications
Author: Wilson C. Chin
Publsiher: John Wiley & Sons
Total Pages: 456
Release: 2014-09-19
Genre: Science
ISBN: 9781118925904

Download Wave Propagation in Drilling Well Logging and Reservoir Applications Book in PDF, Epub and Kindle

Wave propagation is central to all areas of petroleum engineering, e.g., drilling vibrations, MWD mud pulse telemetry, swab-surge, geophysical ray tracing, ocean and current interactions, electromagnetic wave and sonic applications in the borehole, but rarely treated rigorously or described in truly scientific terms, even for a single discipline. Wilson Chin, an MIT and Caltech educated scientist who has consulted internationally, provides an integrated, comprehensive, yet readable exposition covering all of the cited topics, offering insights, algorithms and validated methods never before published. A must on every petroleum engineering bookshelf! In particular, the book: Delivers drillstring vibrations models coupling axial, torsional and lateral motions that predict rate-of-penetration, bit bounce and stick-slip as they depend on rock-bit interaction and bottomhole assembly properties, Explains why catastrophic lateral vibrations at the neutral point cannot be observed from the surface even in vertical wells, but providing a proven method to avoid them, Demonstrates why Fermat's "principle of least time" (used in geophysics) applies to non-dissipative media only, but using the "kinematic wave theory" developed at MIT, derives powerful methods applicable to general attenuative inhomogeneous media, Develops new approaches to mud acoustics and applying them to MWD telemetry modeling and strong transients in modern swab-surge applicagtions, Derives new algorithms for borehole geophysics interpretation, e.g., Rh and Rv in electromagnetic wave and permeability in Stoneley waveform analysis, and Outlines many more applications, e.g., wave loadings on offshore platforms, classical problems in wave propagation, and extensions to modern kinematic wave theory. These disciplines, important to all field-oriented activities, are not treated as finite element applications that are simply gridded, "number-crunched" and displayed, but as scientific disciplines deserving of clear explanation. General results are carefully motivated, derived and applied to real-world problems, with results demonstrating the importance and predictive capabilities of the new methods.

Wave Propagation in Drilling Well Logging and Reservoir Applications

Wave Propagation in Drilling  Well Logging  and Reservoir Applications
Author: Wilson C. Chin
Publsiher: Unknown
Total Pages: 135
Release: 2014
Genre: TECHNOLOGY & ENGINEERING
ISBN: 1118925939

Download Wave Propagation in Drilling Well Logging and Reservoir Applications Book in PDF, Epub and Kindle

Multiprobe Pressure Testing and Reservoir Characterization

Multiprobe Pressure Testing and Reservoir Characterization
Author: Wilson C Chin
Publsiher: Elsevier
Total Pages: 439
Release: 2024-04-01
Genre: Science
ISBN: 9780443241123

Download Multiprobe Pressure Testing and Reservoir Characterization Book in PDF, Epub and Kindle

Multiprobe Pressure Testing and Reservoir Characterization: Pressure Transient, Contamination, Liquid and Gas Pumping Analysis provides much-needed three-dimensional pressure transient simulators for job planning and data interpretation in well logging. First, discussions on fundamental concepts present fluid sampling, pressure transient and contamination analysis; physical concepts and numerical approaches; and multiprobe model formulations and validations. Other sections cover four-probe algorithms, including conventional, overbalanced, and underbalanced drilling applications. The final section addresses triple-probe algorithms, which includes coupled models for pressure and contamination convergence acceleration. Notably, Chapter 10 explains how the multiprobe tool’s focus on characterizing permeability will promote better use of the reservoir as well as assist with energy storage in underground rock, demonstrating how multiprobe tools also facilitate the energy transition from fossil fuels to sustainable geothermal energy. The book's mathematical methods are described in a straightforward manner with numerous example calculations and applications demonstrating the practical utility of the approaches. This book is an invaluable reference for petroleum geologists and engineers involved in geothermal and conventional reservoir characterization and simulation. Reviews present day needs, tool operations, and analysis methods, along with numerous practical examples and applications Develops a suite of mathematical models, algorithms, and software from first principles Explains, in detail, how multiprobe pressure logging is superior to using conventional sensors because direct, accurate reservoir characteristics support energy-efficient geothermal designs Provides an alternative look at the investigation of unconventional reservoirs, not only in terms of hydrocarbon production but also with carbon and energy storage in mind

Reservoir Simulation and Well Interference

Reservoir Simulation and Well Interference
Author: Wilson Chin,Xiaoying Zhuang
Publsiher: John Wiley & Sons
Total Pages: 400
Release: 2020-03-17
Genre: Science
ISBN: 9781119283447

Download Reservoir Simulation and Well Interference Book in PDF, Epub and Kindle

Co-written by a world-renowned petroleum engineer, this breakthrough new volume teaches engineers how to configure, place and produce horizontal and multilateral wells in geologically complicated reservoirs, select optimal well spacings and fracture separations, and how to manage factors influencing well productivity using proven cost-effective and user-friendly simulation methods. Charged in the 1990s with solving some of petroleum engineering's biggest problems that the industry deemed "unsolvable," the authors of this innovative new volume solved those problems, not just using a well-published math model, but one optimized to run rapidly, the first time, every time. This not only provides numerical output, but production curves and color pressure plots automatically. And each in a single hour of desk time. Using their Multisim software that is featured in this volume, secondary school students at the Aldine Independent School District delivered professional quality simulations in a training program funded by some of the largest energy companies in the world. Think what you, as a professional engineer, could do in your daily work. Valuable with or without the software, this volume is the cutting-edge of reservoir engineering today, prefacing each chapter with a "trade journal summary" followed by hands-on details, allowing readers to replicate and extend results for their own applications. This volume covers parent-child, multilateral well, and fracture flow interactions, reservoir flow analysis, many other issues involving fluid flow, fracturing, and many other common "unsolvable" problems that engineers encounter every day. It is a must-have for every engineer's bookshelf.

Quantitative Methods in Reservoir Engineering

Quantitative Methods in Reservoir Engineering
Author: Wilson C. Chin, PhD
Publsiher: Gulf Professional Publishing
Total Pages: 706
Release: 2016-10-01
Genre: Technology & Engineering
ISBN: 9780128110973

Download Quantitative Methods in Reservoir Engineering Book in PDF, Epub and Kindle

Quantitative Methods in Reservoir Engineering, Second Edition, brings together the critical aspects of the industry to create more accurate models and better financial forecasts for oil and gas assets. Updated to cover more practical applications related to intelligent infill drilling, optimized well pattern arrangement, water flooding with modern wells, and multiphase flow, this new edition helps reservoir engineers better lay the mathematical foundations for analytical or semi-analytical methods in today’s more difficult reservoir engineering applications. Authored by a worldwide expert on computational flow modeling, this reference integrates current mathematical methods to aid in understanding more complex well systems and ultimately guides the engineer to choose the most profitable well path. The book delivers a valuable tool that will keep reservoir engineers up-to-speed in this fast-paced sector of the oil and gas market. Stay competitive with new content on unconventional reservoir simulation Get updated with new material on formation testing and flow simulation for complex well systems and paths Apply methods derived from real-world case studies and calculation examples

Reservoir Engineering in Modern Oilfields

Reservoir Engineering in Modern Oilfields
Author: Wilson C. Chin
Publsiher: John Wiley & Sons
Total Pages: 352
Release: 2016-07-26
Genre: Science
ISBN: 9781119284604

Download Reservoir Engineering in Modern Oilfields Book in PDF, Epub and Kindle

Real-world reservoirs are layered, heterogeneous and anisotropic, exposed to water and gas drives, faults, barriers and fractures. They are produced by systems of vertical, deviated, horizontal and multilateral wells whose locations, sizes, shapes and topologies are dictated "on the fly, at random"by petroleum engineers and drillers at well sites. Wells may be pressure or rate-constrained, with these roles re-assigned during simulation with older laterals shut-in, newer wells drilled and brought on stream, and so on. And all are subject to steady and transient production, each satisfying different physical and mathematical laws, making reservoir simulation an art difficult to master and introducing numerous barriers to entry. All of these important processes can now be simulated in any order using rapid, stable and accurate computational models developed over two decades. And what if it were further possible to sketch complicated geologies and lithologies, plus equally complex systems of general wells, layer-by-layer using Windows Notepad? And with no prior reservoir simulation experience and only passing exposure to reservoir engineering principles? Have the user press "Simulate," and literally, within minutes, produce complicated field-wide results, production forecasts, and detailed three-dimensional color pressure plots from integrated graphics algorithms? Developed over years of research, this possibility has become reality. The author, an M.I.T. trained scientist who has authored fifteen original research books, over a hundred papers and forty patents, winner of a prestigious British Petroleum Chairman's Innovation Award in reservoir engineering and a record five awards from the United States Department of Energy, has delivered just such a product, making real-time planning at the well-site simple and practical. Workflows developed from experience as a practicing reservoir engineer are incorporated into "intelligent menus" that make in-depth understanding of simulation principles and readings of user manuals unnecessary. This volume describes new technology for down-to-earth problems using numerous examples performed with our state-of-the-art simulator, one that is available separately at affordable cost and requiring only simple Intel Core i5 computers without specialized graphics boards. The new methods are rigorous, validated and well-documented and are now available for broad petroleum industry application.

Measurement While Drilling

Measurement While Drilling
Author: Wilson C. Chin
Publsiher: John Wiley & Sons
Total Pages: 525
Release: 2018-07-23
Genre: Science
ISBN: 9781119479369

Download Measurement While Drilling Book in PDF, Epub and Kindle

Trade magazines and review articles describe MWD in casual terms, e.g., positive versus negative pulsers, continuous wave systems, drilling channel noise and attenuation, in very simple terms absent of technical rigor. However, few truly scientific discussions are available on existing methods, let alone the advances necessary for high-data-rate telemetry. Without a strong foundation building on solid acoustic principles, rigorous mathematics, and of course, fast, inexpensive and efficient testing of mechanical designs, low data rates will impose unacceptable quality issues to real-time formation evaluation for years to come. This all-new revised second edition of an instant classic promises to change all of this. The lead author and M.I.T.-educated scientist, Wilson Chin, has written the only book available that develops mud pulse telemetry from first principles, adapting sound acoustic principles to rigorous signal processing and efficient wind tunnel testing. In fact, the methods and telemetry principles developed in the book were recently adopted by one of the world's largest industrial corporations in its mission to redefine the face of MWD. The entire engineering history for continuous wave telemetry is covered: anecdotal stories and their fallacies, original hardware problems and their solutions, different noise mechanisms and their signal processing solutions, apparent paradoxes encountered in field tests and simple explanations to complicated questions, and so on, are discussed in complete "tell all" detail for students, research professors and professional engineers alike. These include signal processing algorithms, signal enhancement methods, and highly efficient "short" and "long wind tunnel" test methods, whose results can be dynamically re-scaled to real muds flowing at any speed. A must read for all petroleum engineering professionals!

Supercharge Invasion and Mudcake Growth in Downhole Applications

Supercharge  Invasion  and Mudcake Growth in Downhole Applications
Author: Wilson Chin,Tao Lu,Xiaofei Qin,Yongren Feng,Yanmin Zhou
Publsiher: John Wiley & Sons
Total Pages: 530
Release: 2021-06-29
Genre: Science
ISBN: 9781119283324

Download Supercharge Invasion and Mudcake Growth in Downhole Applications Book in PDF, Epub and Kindle

Mysterious "supercharge effects," encountered in formation testing pressure transient analysis, and reservoir invasion, mudcake growth, dynamic filtration, stuck-pipe remediation, and so on, are often discussed in contrasting petrophysical versus drilling contexts. However, these effects are physically coupled and intricately related. The authors focus on a comprehensive formulation, provide solutions for different specialized limits, and develop applications that illustrate how the central ideas can be used in seemingly unrelated disciplines. This approach contributes to a firm understanding of logging and drilling principles. Fortran source code, furnished where applicable, is listed together with recently developed software applications and conveniently summarized throughout the book. In addition, common (incorrect) methods used in the industry are re-analyzed and replaced with more accurate models, which are then used to address challenging field objectives. Sophisticated mathematics is explained in "down to earth" terms, but empirical validations, in this case through Catscan experiments, are used to "keep predictions honest." Similarly, early-time, low mobility, permeability prediction models used in formation testing, several invented by one of the authors, are extended to handle supercharge effects in overbalanced drilling and near-well pressure deficits encountered in underbalanced drilling. These methods are also motivated by reality. For instance, overpressures of 2,000 psi and underpressures near 500 psi are routinely reported in field work, thus imparting a special significance to the methods reported in the book. This new volume discusses old problems and modern challenges, formulates and develops advanced models applicable to both drilling and petrophysical objectives. The presentation focuses on central unifying physical models which are carefully formulated and mathematically solved. The wealth of applications examples and supporting software discussed provides readers with a unified focus behind daily work activities, emphasizing common features and themes rather than unrelated methods and work flows. This comprehensive book is "must" reading for every petroleum engineer.