Wind Energy Generation Modelling and Control

Wind Energy Generation  Modelling and Control
Author: Olimpo Anaya-Lara,Nick Jenkins,Janaka B. Ekanayake,Phill Cartwright,Michael Hughes
Publsiher: John Wiley & Sons
Total Pages: 222
Release: 2011-08-24
Genre: Technology & Engineering
ISBN: 9781119964209

Download Wind Energy Generation Modelling and Control Book in PDF, Epub and Kindle

WIND ENERGY GENERATION WIND ENERGY GENERATION MODELLING AND CONTROL With increasing concern over climate change and the security of energy supplies, wind power is emerging as an important source of electrical energy throughout the world. Modern wind turbines use advanced power electronics to provide efficient generator control and to ensure compatible operation with the power system. Wind Energy Generation describes the fundamental principles and modelling of the electrical generator and power electronic systems used in large wind turbines. It also discusses how they interact with the power system and the influence of wind turbines on power system operation and stability. Key features: Includes a comprehensive account of power electronic equipment used in wind turbines and for their grid connection. Describes enabling technologies which facilitate the connection of large-scale onshore and offshore wind farms. Provides detailed modelling and control of wind turbine systems. Shows a number of simulations and case studies which explain the dynamic interaction between wind power and conventional generation.

Wind Energy Generation

Wind Energy Generation
Author: Olimpo Anaya-Lara
Publsiher: Unknown
Total Pages: 135
Release: 2005*
Genre: Synchronous generators
ISBN: OCLC:742513094

Download Wind Energy Generation Book in PDF, Epub and Kindle

Offshore Wind Energy Generation

Offshore Wind Energy Generation
Author: Olimpo Anaya-Lara,David Campos-Gaona,Edgar Moreno-Goytia,Grain Adam
Publsiher: John Wiley & Sons
Total Pages: 306
Release: 2014-03-26
Genre: Technology & Engineering
ISBN: 9781118701713

Download Offshore Wind Energy Generation Book in PDF, Epub and Kindle

The offshore wind sector’s trend towards larger turbines, bigger wind farm projects and greater distance to shore has a critical impact on grid connection requirements for offshore wind power plants. This important reference sets out the fundamentals and latest innovations in electrical systems and control strategies deployed in offshore electricity grids for wind power integration. Includes: All current and emerging technologies for offshore wind integration and trends in energy storage systems, fault limiters, superconducting cables and gas-insulated transformers Protection of offshore wind farms illustrating numerous system integration and protection challenges through case studies Modelling of doubly-fed induction generators (DFIG) and full-converter wind turbines structures together with an explanation of the smart grid concept in the context of wind farms Comprehensive material on power electronic equipment employed in wind turbines with emphasis on enabling technologies (HVDC, STATCOM) to facilitate the connection and compensation of large-scale onshore and offshore wind farms Worked examples and case studies to help understand the dynamic interaction between HVDC links and offshore wind generation Concise description of the voltage source converter topologies, control and operation for offshore wind farm applications Companion website containing simulation models of the cases discussed throughout Equipping electrical engineers for the engineering challenges in utility-scale offshore wind farms, this is an essential resource for power system and connection code designers and pratitioners dealing with integation of wind generation and the modelling and control of wind turbines. It will also provide high-level support to academic researchers and advanced students in power and renewable energy as well as technical and research staff in transmission and distribution system operators and in wind turbine and electrical equipment manufacturers.

Doubly Fed Induction Machine

Doubly Fed Induction Machine
Author: Gonzalo Abad,Jesús López,Miguel Rodríguez,Luis Marroyo,Grzegorz Iwanski
Publsiher: Wiley-IEEE Press
Total Pages: 640
Release: 2011-11-01
Genre: Technology & Engineering
ISBN: 0470768657

Download Doubly Fed Induction Machine Book in PDF, Epub and Kindle

This book will be focused on the modeling and control of the DFIM based wind turbines. In the first part of the book, the mathematical description of different basic dynamic models of the DFIM will be carried out. It will be accompanied by a detailed steady-state analysis of the machine. After that, a more sophisticated model of the machine that considers grid disturbances, such as voltage dips and unbalances will be also studied. The second part of the book surveys the most relevant control strategies used for the DFIM when it operates at the wind energy generation application. The control techniques studied, range from standard solutions used by wind turbine manufacturers, to the last developments oriented to improve the behavior of high power wind turbines, as well as control and hardware based solutions to address different faulty scenarios of the grid. In addition, the standalone DFIM generation system will be also analyzed.

Modeling and Modern Control of Wind Power

Modeling and Modern Control of Wind Power
Author: Qiuwei Wu,Yuanzhang Sun
Publsiher: John Wiley & Sons
Total Pages: 281
Release: 2018-02-05
Genre: Science
ISBN: 9781119236269

Download Modeling and Modern Control of Wind Power Book in PDF, Epub and Kindle

An essential reference to the modeling techniques of wind turbine systems for the application of advanced control methods This book covers the modeling of wind power and application of modern control methods to the wind power control—specifically the models of type 3 and type 4 wind turbines. The modeling aspects will help readers to streamline the wind turbine and wind power plant modeling, and reduce the burden of power system simulations to investigate the impact of wind power on power systems. The use of modern control methods will help technology development, especially from the perspective of manufactures. Chapter coverage includes: status of wind power development, grid code requirements for wind power integration; modeling and control of doubly fed induction generator (DFIG) wind turbine generator (WTG); optimal control strategy for load reduction of full scale converter (FSC) WTG; clustering based WTG model linearization; adaptive control of wind turbines for maximum power point tracking (MPPT); distributed model predictive active power control of wind power plants and energy storage systems; model predictive voltage control of wind power plants; control of wind power plant clusters; and fault ride-through capability enhancement of VSC HVDC connected offshore wind power plants. Modeling and Modern Control of Wind Power also features tables, illustrations, case studies, and an appendix showing a selection of typical test systems and the code of adaptive and distributed model predictive control. Analyzes the developments in control methods for wind turbines (focusing on type 3 and type 4 wind turbines) Provides an overview of the latest changes in grid code requirements for wind power integration Reviews the operation characteristics of the FSC and DFIG WTG Presents production efficiency improvement of WTG under uncertainties and disturbances with adaptive control Deals with model predictive active and reactive power control of wind power plants Describes enhanced control of VSC HVDC connected offshore wind power plants Modeling and Modern Control of Wind Power is ideal for PhD students and researchers studying the field, but is also highly beneficial to engineers and transmission system operators (TSOs), wind turbine manufacturers, and consulting companies.

Model Predictive Control of Wind Energy Conversion Systems

Model Predictive Control of Wind Energy Conversion Systems
Author: Venkata Yaramasu,Bin Wu
Publsiher: John Wiley & Sons
Total Pages: 516
Release: 2016-12-19
Genre: Science
ISBN: 9781118988589

Download Model Predictive Control of Wind Energy Conversion Systems Book in PDF, Epub and Kindle

Model Predictive Control of Wind Energy Conversion Systems addresses the predicative control strategy that has emerged as a promising digital control tool within the field of power electronics, variable-speed motor drives, and energy conversion systems. The authors provide a comprehensive analysis on the model predictive control of power converters employed in a wide variety of variable-speed wind energy conversion systems (WECS). The contents of this book includes an overview of wind energy system configurations, power converters for variable-speed WECS, digital control techniques, MPC, modeling of power converters and wind generators for MPC design. Other topics include the mapping of continuous-time models to discrete-time models by various exact, approximate, and quasi-exact discretization methods, modeling and control of wind turbine grid-side two-level and multilevel voltage source converters. The authors also focus on the MPC of several power converter configurations for full variable-speed permanent magnet synchronous generator based WECS, squirrel-cage induction generator based WECS, and semi-variable-speed doubly fed induction generator based WECS. Furthermore, this book: Analyzes a wide variety of practical WECS, illustrating important concepts with case studies, simulations, and experimental results Provides a step-by-step design procedure for the development of predictive control schemes for various WECS configurations Describes continuous- and discrete-time modeling of wind generators and power converters, weighting factor selection, discretization methods, and extrapolation techniques Presents useful material for other power electronic applications such as variable-speed motor drives, power quality conditioners, electric vehicles, photovoltaic energy systems, distributed generation, and high-voltage direct current transmission. Explores S-Function Builder programming in MATLAB environment to implement various MPC strategies through the companion website Reflecting the latest technologies in the field, Model Predictive Control of Wind Energy Conversion Systems is a valuable reference for academic researchers, practicing engineers, and other professionals. It can also be used as a textbook for graduate-level and advanced undergraduate courses.

Modeling and Control Aspects of Wind Power Systems

Modeling and Control Aspects of Wind Power Systems
Author: S. M. Muyeen,Ahmed Al-Durra
Publsiher: BoD – Books on Demand
Total Pages: 216
Release: 2013-03-20
Genre: Technology & Engineering
ISBN: 9789535110422

Download Modeling and Control Aspects of Wind Power Systems Book in PDF, Epub and Kindle

This book covers the recent development and progress of the wind energy conversion system. The chapters are contributed by prominent researchers in the field of wind energy and cover grid integration issues, modern control theories applied in wind energy conversion system, and dynamic and transient stability studies. Modeling and control strategies of different variable speed wind generators such as switched reluctance generator, permanent magnet synchronous generator, doubly-fed induction generator, including the suitable power electronic converter topologies for grid integration, are discussed. Real time control study of wind farm using Real Time Digital Simulator (RTDS) is also included in the book, along with Fault ride through, street light application, integrated power flow solutions, direct power control, wireless coded deadbeat power control, and other interesting topics.

Advances in Modelling and Control of Wind and Hydrogenerators

Advances in Modelling and Control of Wind and Hydrogenerators
Author: Amir Ebrahimi
Publsiher: BoD – Books on Demand
Total Pages: 201
Release: 2020-04-01
Genre: Technology & Engineering
ISBN: 9781838805326

Download Advances in Modelling and Control of Wind and Hydrogenerators Book in PDF, Epub and Kindle

Rapid deployment of wind and solar energy generation is going to result in a series of new problems with regards to the reliability of our electrical grid in terms of outages, cost, and life-time, forcing us to promptly deal with the challenging restructuring of our energy systems. Increased penetration of fluctuating renewable energy resources is a challenge for the electrical grid. Proposing solutions to deal with this problem also impacts the functionality of large generators. The power electronic generator interactions, multi-domain modelling, and reliable monitoring systems are examples of new challenges in this field. This book presents some new modelling methods and technologies for renewable energy generators including wind, ocean, and hydropower systems.