2D Metal Carbides and Nitrides MXenes

2D Metal Carbides and Nitrides  MXenes
Author: Babak Anasori,Yury Gogotsi
Publsiher: Springer Nature
Total Pages: 534
Release: 2019-10-30
Genre: Technology & Engineering
ISBN: 9783030190262

Download 2D Metal Carbides and Nitrides MXenes Book in PDF, Epub and Kindle

This book describes the rapidly expanding field of two-dimensional (2D) transition metal carbides and nitrides (MXenes). It covers fundamental knowledge on synthesis, structure, and properties of these new materials, and a description of their processing, scale-up and emerging applications. The ways in which the quickly expanding family of MXenes can outperform other novel nanomaterials in a variety of applications, spanning from energy storage and conversion to electronics; from water science to transportation; and in defense and medical applications, are discussed in detail.

MXenes

MXenes
Author: Yury Gogotsi
Publsiher: CRC Press
Total Pages: 1100
Release: 2023-08-24
Genre: Technology & Engineering
ISBN: 9781000618945

Download MXenes Book in PDF, Epub and Kindle

Since their discovery in 2011, MXenes (2D carbides, nitrides, and carbonitrides of early transition metals) have developed into one of the largest and most intensively studied families of 2D materials. They offer unique properties and are being explored in a large variety of applications. This book compiles the most important research from a pioneer of the field, Professor Yury Gogotsi, and his interdisciplinary research team, as well as numerous collaborators worldwide. It reports on the discovery and rise of MXenes and describes their synthesis and processing, properties, and incorporation into polymer, ceramic, and metal matrices to produce composites. It also discusses the potential of MXenes for use in energy storage, optics, electronics, and sensing, as well as biomedical, environmental, and electrocatalysis applications. The book will appeal to anyone interested in nanomaterials and their synthesis, properties, and applications.

MXenes Fundamentals and Applications

MXenes  Fundamentals and Applications
Author: Abdullah M. Asiri
Publsiher: Materials Research Forum LLC
Total Pages: 222
Release: 2019-06-20
Genre: Technology & Engineering
ISBN: 9781644900246

Download MXenes Fundamentals and Applications Book in PDF, Epub and Kindle

This is the very first book on the highly promising topic of MXenes; focusing on their fundamental characteristics and properties, fabrication techniques and applications. MXenes are two-dimensional materials consisting of few atoms thick layers of transition metal carbides or nitrides. These are characterized by high electrical conductivity, good hydrophilicity, chemical stability, and ultrathin 2D sheet-like morphology. Applications in the energy, environmental, biomedical and electronic industries include catalysis, membrane separation, supercapacitors, hybrid-ion capacitors, batteries, flexible electronics, hydrogen storage, nanoelectronics, and sensors.

MXenes and their Composites

MXenes and their Composites
Author: Kishor Kumar Sadasivuni,Kalim Deshmukh,S. K. Khadheer Pasha,Tomas Kovarik
Publsiher: Elsevier
Total Pages: 796
Release: 2021-10-07
Genre: Technology & Engineering
ISBN: 9780128225868

Download MXenes and their Composites Book in PDF, Epub and Kindle

MXenes and their Composites: Synthesis, Properties and Potential Applications presents a state of the art overview of the recent developments on the synthesis, functionalization, properties and emerging applications of two-dimensional (2D) MXenes and their composites.The book systematically describes the state-of-the-art knowledge and fundamentals of MXene synthesis, structure, surface chemistry and functionalization. The book also discusses the unique electronic, optical, mechanical and topological properties of MXenes. Besides, this book covers the various emerging applications of MXenes and their composites across different fields such as energy storage and conversion, gas sensing and biosensing, rechargeable lithium and sodium-ion batteries, lithium-sulphur and multivalent batteries, electromagnetic interference shielding, hybrid capacitors and supercapacitors, hydrogen storage, catalysis and photoelectrocatalysis, gas separation and water desalination, environmental remediation and medical and biomedical applications. All these applications have been efficiently discussed in the specific chapters and in each case, the processing of MXene composites has also been discussed.This book will be an excellent reference for scientists and engineers across various disciplines and industries working in the field of highly promising 2D MXenes and their composites. The book will also act as a guide for academic researchers, material scientists, and advanced students in investigating the new applications of 2D MXenes based materials. Covers fundamentals of technologically important MAX phases, MXene derivatives, MXene synthesis methods, intercalation and delamination strategies, surface functionalization, fundamental characteristics and properties Demonstrates major application areas of MXenes, including catalytic, energy storage and energy generation, flexible electronics, EMI shielding, sensors and biosensors, medical and biomedical, gas separation and water desalination Presents a detailed discussion on the processing and performance of various MXenes towards different applications

MAX Phases

MAX Phases
Author: Michel W. Barsoum
Publsiher: John Wiley & Sons
Total Pages: 436
Release: 2013-11-13
Genre: Technology & Engineering
ISBN: 9783527654604

Download MAX Phases Book in PDF, Epub and Kindle

In this comprehensive yet compact monograph, Michel W. Barsoum, one of the pioneers in the field and the leading figure in MAX phase research, summarizes and explains, from both an experimental and a theoretical viewpoint, all the features that are necessary to understand and apply these new materials. The book covers elastic, electrical, thermal, chemical and mechanical properties in different temperature regimes. By bringing together, in a unifi ed, self-contained manner, all the information on MAX phases hitherto only found scattered in the journal literature, this one-stop resource offers researchers and developers alike an insight into these fascinating materials.

Synthesis and transport properties of 2D transition metal carbides MXenes

Synthesis and transport properties of 2D transition metal carbides  MXenes
Author: Joseph Halim
Publsiher: Linköping University Electronic Press
Total Pages: 82
Release: 2018-09-28
Genre: Electronic Book
ISBN: 9789176852194

Download Synthesis and transport properties of 2D transition metal carbides MXenes Book in PDF, Epub and Kindle

Since the isolation and characterization of graphene, there has been a growing interest in 2D materials owing to their unique properties compared to their 3D counterparts. Recently, a family of 2D materials of early transition metal carbides and nitrides, labelled MXenes, has been discovered (Ti2CTz, Ti3C2Tz, Mo2TiC2Tz, Ti3CNTz, Ta4C3Tz, Ti4N3Tz among many others), where T stands for surface-terminating groups (O, OH, and F). MXenes are mostly produced by selectively etching A layers (where A stands for group A elements, mostly groups 13 and 14) from the MAX phases. The latter are a family of layered ternary carbides and/or nitrides and have a general formula of Mn+1AXn (n = 1-3), where M is a transition metal and X is carbon and/or nitrogen. The produced MXenes have a conductive carbide core and a non-conductive O-, OH- and/or F-terminated surface, which allows them to work as electrodes for energy storage applications, such as Li-ion batteries and supercapacitors. Prior to this work, MXenes were produced in the form of flakes of lateral dimension of about 1 to 2 microns; such dimensions and form are not suitable for electronic characterization and applications. I have synthesized various MXenes (Ti3C2Tz, Ti2CTz and Nb2CTz) as epitaxial thin films, a more suitable form for electronic and photonic applications. These films were produced by HF, NH4HF2 or LiF + HCl etching of magnetron sputtered epitaxial Ti3AlC2, Ti2AlC, and Nb2AlC thin films. For transport properties of the Ti-based MXenes, Ti2CTz and Ti3C2Tz, changing n from 1 to 2 resulted in an increase in conductivity but had no effect on the transport mechanism (i.e. both Ti3C2Tx and Ti2CTx were metallic). In order to examine whether the electronic properties of MXenes differ when going from a few layers to a single flake, similar to graphene, the electrical characterization of a single Ti3C2Tz flake with a lateral size of about 10 ?m was performed. These measurements, the first for MXene, demonstrated its metallic nature, along with determining the nature of the charge carriers and their mobility. This indicates that Ti3C2Tz is inherently of 2D nature independent of the number of stacked layers, unlike graphene, where the electronic properties change based on the number of stacked layers. Changing the transition metal from Ti to Nb, viz. comparing Ti2CTz and Nb2CTz thin films, the electronic properties and electronic conduction mechanism differ. Ti2CTz showed metallic-like behavior (resistivity increases with increasing temperature) unlike Nb2CTz where the conduction occurs via variable range hopping mechanism (VRH) - where resistivity decreases with increasing temperature. Furthermore, these studies show the synthesis of pure Mo2CTz in the form of single flakes and freestanding films made by filtering Mo2CTz colloidal suspensions. Electronic characterization of free-standing films made from delaminated Mo2CTz flakes was investigated, showing that a VRH mechanism prevails at low temperatures (7 to ? 60 K). Upon vacuum annealing, the room temperature, RT, conductivity of Mo2CTx increased by two orders of magnitude. The conduction mechanism was concluded to be VRH most likely dominated by hopping within each flake. Other Mo-based MXenes, Mo2TiC2Tz and Mo2Ti2C3Tz, showed VRH mechanism at low temperature. However, at higher temperatures up to RT, the transport mechanism was not clearly understood. Therefore, a part of this thesis was dedicated to further investigating the transport properties of Mo-based MXenes. This includes Mo2CTz, out-of-plane ordered Mo2TiC2Tz and Mo2Ti2C3Tz, and vacancy ordered Mo1.33CTz. Magneto-transport of free-standing thin films of the Mo-based MXenes were studied, showing that all Mo-based MXenes have two transport regimes: a VRH mechanism at lower temperatures and a thermally activated process at higher temperatures. All Mo-based MXenes except Mo1.33CTz show that the electrical transport is dominated by inter-flake transfer. As for Mo1.33CTz, the primary electrical transport mechanism is more likely to be intra-flake. The synthesis of vacancy ordered MXenes (Mo1.33CTz and W1.33CTz) raised the question of possible introduction of vacancies in all MXenes. Vacancy ordered MXenes are produced by selective etching of Al and (Sc or Y) atoms from the parent 3D MAX phases, such as (Mo2/3Sc1/3)2AlC, with in-plane chemical ordering of Mo and Sc. However, not all quaternary parent MAX phases form the in-plane chemical ordering of the two M metals; thus the synthesis of the vacancy-ordered MXenes is restricted to a very limited number of MAX phases. I present a new method to obtain MXene flakes with disordered vacancies that may be generalized to all quaternary MAX phases. As proof of concept, I chose Nb-C MXene, as this 2D material has shown promise in several applications, including energy storage, photothermal cell ablation and photocatalysts for hydrogen evolution. Starting from synthetizing (Nb2/3Sc1/3)2AlC quaternary solid solution and etching both the Sc and Al atoms resulted in Nb1.33C material with a large number of vacancies and vacancy clusters. This method may be applicable to other quaternary or higher MAX phases wherein one of the transition metals is more reactive than the other, and it could be of vital importance in applications such as catalysis and energy storage.

Layered 2D Materials and Their Allied Applications

Layered 2D Materials and Their Allied Applications
Author: Inamuddin,Rajender Boddula,Mohd Imran Ahamed,Abdullah M. Asiri
Publsiher: John Wiley & Sons
Total Pages: 400
Release: 2020-06-23
Genre: Technology & Engineering
ISBN: 9781119654964

Download Layered 2D Materials and Their Allied Applications Book in PDF, Epub and Kindle

Ever since the discovery of graphene, two-dimensional layered materials (2DLMs) have been the central tool of the materials research community. The reason behind their importance is their superlative and unique electronic, optical, physical, chemical and mechanical properties in layered form rather than in bulk form. The 2DLMs have been applied to electronics, catalysis, energy, environment, and biomedical applications. The following topics are discussed in the book’s fifteen chapters: • The research status of the 2D metal-organic frameworks and the different techniques used to synthesize them. • 2D black phosphorus (BP) and its practical application in various fields. • Reviews the synthesis methods of MXenes and provides a detailed discussion of their structural characterization and physical, electrochemical and optical properties, as well as applications in catalysis, energy storage, environmental management, biomedicine, and gas sensing. • The carbon-based materials and their potential applications via the photocatalytic process using visible light irradiation. • 2D materials like graphene, TMDCs, few-layer phosphorene, MXene in layered form and their heterostructures. • The structure and applications of 2D perovskites. • The physical parameters of pristine layered materials, ZnO, transition metal dichalcogenides, and heterostructures of layered materials are discussed. • The coupling of graphitic carbon nitride with various metal sulfides and oxides to form efficient heterojunction for water purification. • The structural features, synthetic methods, properties, and different applications and properties of 2D zeolites. • The methods for synthesizing 2D hollow nanostructures are featured and their structural aspects and potential in medical and non-medical applications. • The characteristics and structural aspects of 2D layered double hydroxides (LDHs) and the various synthesis methods and role of LDH in non-medical applications as adsorbent, sensor, catalyst, etc. • The synthesis of graphene-based 2D layered materials synthesized by using top-down and bottom-up approaches where the main emphasis is on the hot-filament thermal chemical vapor deposition (HFTCVD) method. • The different properties of 2D h-BN and borophene and the various methods being used for the synthesis of 2D h-BN, along with their growth mechanism and transfer techniques. • The physical properties and current progress of various transition metal dichalcogenides (TMDC) based on photoactive materials for photoelectrochemical (PEC) hydrogen evolution reaction. • The state-of-the-art of 2D layered materials and associated devices, such as electronic, biosensing, optoelectronic, and energy storage applications.

Transition Metal Carbides and Nitrides

Transition Metal Carbides and Nitrides
Author: Louis Toth
Publsiher: Elsevier
Total Pages: 296
Release: 2014-04-11
Genre: Technology & Engineering
ISBN: 9780323157223

Download Transition Metal Carbides and Nitrides Book in PDF, Epub and Kindle

Refractory Materials, Volume 7: Transition Metal Carbides and Nitrides discusses the developments in transition metal carbide and nitride research. This volume is organized into nine chapters that emphasize the mechanical and superconducting properties of these compounds. The introductory chapters deal with the general properties, preparation techniques, characterization, crystal chemistry, phase relationships, and thermodynamics of transition metal carbides and nitrides. The following chapter highlights the mechanical properties of these compounds, such as elastic and plastic deformation, fracture, strengthening mechanisms, and hardness. The discussion then shifts to specific electrical and magnetic properties, including electrical resistivity, Hall coefficient, and magnetic susceptibility. A separate chapter is devoted to carbides and nitrides as superconductors. The concluding chapters explore certain theories that explain the mechanisms of band structure and bonding in carbides and nitrides. This volume is of great value to research workers in metallurgy, ceramics, physics, chemistry, and related fields, as well as to advanced students investigating problems concerning high temperature materials or interstitial compounds.