A Student s Guide to Python for Physical Modeling

A Student s Guide to Python for Physical Modeling
Author: Jesse M. Kinder,Philip Nelson
Publsiher: Princeton University Press
Total Pages: 241
Release: 2021-08-03
Genre: Science
ISBN: 9780691223667

Download A Student s Guide to Python for Physical Modeling Book in PDF, Epub and Kindle

A fully updated tutorial on the basics of the Python programming language for science students Python is a computer programming language that has gained popularity throughout the sciences. This fully updated second edition of A Student's Guide to Python for Physical Modeling aims to help you, the student, teach yourself enough of the Python programming language to get started with physical modeling. You will learn how to install an open-source Python programming environment and use it to accomplish many common scientific computing tasks: importing, exporting, and visualizing data; numerical analysis; and simulation. No prior programming experience is assumed. This guide introduces a wide range of useful tools, including: Basic Python programming and scripting Numerical arrays Two- and three-dimensional graphics Animation Monte Carlo simulations Numerical methods, including solving ordinary differential equations Image processing Numerous code samples and exercises—with solutions—illustrate new ideas as they are introduced. This guide also includes supplemental online resources: code samples, data sets, tutorials, and more. This edition includes new material on symbolic calculations with SymPy, an introduction to Python libraries for data science and machine learning (pandas and sklearn), and a primer on Python classes and object-oriented programming. A new appendix also introduces command line tools and version control with Git.

Student s Guide to Python for Physical Modeling

Student s Guide to Python for Physical Modeling
Author: Jesse M. and Philip Nelson Kinder
Publsiher: Unknown
Total Pages: 135
Release: 2013
Genre: Electronic Book
ISBN: OCLC:1267298567

Download Student s Guide to Python for Physical Modeling Book in PDF, Epub and Kindle

A Student s Guide to Python for Physical Modeling

A Student s Guide to Python for Physical Modeling
Author: Jesse M. Kinder,Philip Nelson
Publsiher: Princeton University Press
Total Pages: 240
Release: 2021-08-03
Genre: Computers
ISBN: 9780691223650

Download A Student s Guide to Python for Physical Modeling Book in PDF, Epub and Kindle

"Python is a computer programming language that is rapidly gaining popularity throughout the sciences. A Student's Guide to Python for Physical Modeling aims to help you, the student, teach yourself enough of the Python programming language to get started with physical modeling. You will learn how to install an open-source Python programming environment and use it to accomplish many common scientific computing tasks: importing, exporting, and visualizing data; numerical analysis; and simulation. No prior programming experience is assumed."--

Numerical Python in Astronomy and Astrophysics

Numerical Python in Astronomy and Astrophysics
Author: Wolfram Schmidt,Marcel Völschow
Publsiher: Springer Nature
Total Pages: 250
Release: 2021-07-14
Genre: Science
ISBN: 9783030703479

Download Numerical Python in Astronomy and Astrophysics Book in PDF, Epub and Kindle

This book provides a solid foundation in the Python programming language, numerical methods, and data analysis, all embedded within the context of astronomy and astrophysics. It not only enables students to learn programming with the aid of examples from these fields but also provides ample motivation for engagement in independent research. The book opens by outlining the importance of computational methods and programming algorithms in contemporary astronomical and astrophysical research, showing why programming in Python is a good choice for beginners. The performance of basic calculations with Python is then explained with reference to, for example, Kepler’s laws of planetary motion and gravitational and tidal forces. Here, essential background knowledge is provided as necessary. Subsequent chapters are designed to teach the reader to define and use important functions in Python and to utilize numerical methods to solve differential equations and landmark dynamical problems in astrophysics. Finally, the analysis of astronomical data is discussed, with various hands-on examples as well as guidance on astronomical image analysis and applications of artificial neural networks.

Classical Mechanics

Classical Mechanics
Author: Christopher W. Kulp,Vasilis Pagonis
Publsiher: CRC Press
Total Pages: 529
Release: 2020-11-16
Genre: Science
ISBN: 9781351024365

Download Classical Mechanics Book in PDF, Epub and Kindle

Classical Mechanics: A Computational Approach with Examples using Python and Mathematica provides a unique, contemporary introduction to classical mechanics, with a focus on computational methods. In addition to providing clear and thorough coverage of key topics, this textbook includes integrated instructions and treatments of computation. Full of pedagogy, it contains both analytical and computational example problems within the body of each chapter. The example problems teach readers both analytical methods and how to use computer algebra systems and computer programming to solve problems in classical mechanics. End-of-chapter problems allow students to hone their skills in problem solving with and without the use of a computer. The methods presented in this book can then be used by students when solving problems in other fields both within and outside of physics. It is an ideal textbook for undergraduate students in physics, mathematics, and engineering studying classical mechanics. Features: Gives readers the "big picture" of classical mechanics and the importance of computation in the solution of problems in physics Numerous example problems using both analytical and computational methods, as well as explanations as to how and why specific techniques were used Online resources containing specific example codes to help students learn computational methods and write their own algorithms A solutions manual is available via the Routledge Instructor Hub and extra code is available via the Support Material tab

From Photon to Neuron

From Photon to Neuron
Author: Philip Nelson
Publsiher: Princeton University Press
Total Pages: 512
Release: 2017-05-09
Genre: Science
ISBN: 9781400885480

Download From Photon to Neuron Book in PDF, Epub and Kindle

A richly illustrated undergraduate textbook on the physics and biology of light Students in the physical and life sciences, and in engineering, need to know about the physics and biology of light. Recently, it has become increasingly clear that an understanding of the quantum nature of light is essential, both for the latest imaging technologies and to advance our knowledge of fundamental life processes, such as photosynthesis and human vision. From Photon to Neuron provides undergraduates with an accessible introduction to the physics of light and offers a unified view of a broad range of optical and biological phenomena. Along the way, this richly illustrated textbook builds the necessary background in neuroscience, photochemistry, and other disciplines, with applications to optogenetics, superresolution microscopy, the single-photon response of individual photoreceptor cells, and more. With its integrated approach, From Photon to Neuron can be used as the basis for interdisciplinary courses in physics, biophysics, sensory neuroscience, biophotonics, bioengineering, or nanotechnology. The goal is always for students to gain the fluency needed to derive every result for themselves, so the book includes a wealth of exercises, including many that guide students to create computer-based solutions. Supplementary online materials include real experimental data to use with the exercises. Assumes familiarity with first-year undergraduate physics and the corresponding math Overlaps the goals of the MCAT, which now includes data-based and statistical reasoning Advanced chapters and sections also make the book suitable for graduate courses An Instructor's Guide and illustration package is available to professors

Solving PDEs in Python

Solving PDEs in Python
Author: Hans Petter Langtangen,Anders Logg
Publsiher: Springer
Total Pages: 152
Release: 2017-03-21
Genre: Computers
ISBN: 9783319524627

Download Solving PDEs in Python Book in PDF, Epub and Kindle

This book offers a concise and gentle introduction to finite element programming in Python based on the popular FEniCS software library. Using a series of examples, including the Poisson equation, the equations of linear elasticity, the incompressible Navier–Stokes equations, and systems of nonlinear advection–diffusion–reaction equations, it guides readers through the essential steps to quickly solving a PDE in FEniCS, such as how to define a finite variational problem, how to set boundary conditions, how to solve linear and nonlinear systems, and how to visualize solutions and structure finite element Python programs. This book is open access under a CC BY license.

Mathematical Methods using Python

Mathematical Methods using Python
Author: Vasilis Pagonis,Christopher Wayne Kulp
Publsiher: CRC Press
Total Pages: 945
Release: 2024-05-14
Genre: Computers
ISBN: 9781040023051

Download Mathematical Methods using Python Book in PDF, Epub and Kindle

This advanced undergraduate textbook presents a new approach to teaching mathematical methods for scientists and engineers. It provides a practical, pedagogical introduction to utilizing Python in Mathematical and Computational Methods courses. Both analytical and computational examples are integrated from its start. Each chapter concludes with a set of problems designed to help students hone their skills in mathematical techniques, computer programming, and numerical analysis. The book places less emphasis on mathematical proofs, and more emphasis on how to use computers for both symbolic and numerical calculations. It contains 182 extensively documented coding examples, based on topics that students will encounter in their advanced courses in Mechanics, Electronics, Optics, Electromagnetism, Quantum Mechanics etc. An introductory chapter gives students a crash course in Python programming and the most often used libraries (SymPy, NumPy, SciPy, Matplotlib). This is followed by chapters dedicated to differentiation, integration, vectors and multiple integration techniques. The next group of chapters covers complex numbers, matrices, vector analysis and vector spaces. Extensive chapters cover ordinary and partial differential equations, followed by chapters on nonlinear systems and on the analysis of experimental data using linear and nonlinear regression techniques, Fourier transforms, binomial and Gaussian distributions. The book is accompanied by a dedicated GitHub website, which contains all codes from the book in the form of ready to run Jupyter notebooks. A detailed solutions manual is also available for instructors using the textbook in their courses. Key Features: · A unique teaching approach which merges mathematical methods and the Python programming skills which physicists and engineering students need in their courses. · Uses examples and models from physical and engineering systems, to motivate the mathematics being taught. · Students learn to solve scientific problems in three different ways: traditional pen-and-paper methods, using scientific numerical techniques with NumPy and SciPy, and using Symbolic Python (SymPy). Vasilis Pagonis is Professor of Physics Emeritus at McDaniel College, Maryland, USA. His research area is applications of thermally and optically stimulated luminescence. He taught courses in mathematical physics, classical and quantum mechanics, analog and digital electronics and numerous general science courses. Dr. Pagonis’ resume lists more than 200 peer-reviewed publications in international journals. He is currently associate editor of the journal Radiation Measurements. He is co-author with Christopher Kulp of the undergraduate textbook “Classical Mechanics: a computational approach, with examples in Python and Mathematica” (CRC Press, 2020). He has also co-authored four graduate-level textbooks in the field of luminescence dosimetry, and most recently published the book “Luminescence Signal analysis using Python” (Springer, 2022). Christopher Kulp is the John P. Graham Teaching Professor of Physics at Lycoming College. He has been teaching undergraduate physics at all levels for 20 years. Dr. Kulp’s research focuses on modelling complex systems, time series analysis, and machine learning. He has published 30 peer-reviewed papers in international journals, many of which include student co-authors. He is also co-author of the undergraduate textbook “Classical Mechanics: a computational approach, with examples in Python and Mathematica” (CRC Press, 2020).