Advanced Time Correlated Single Photon Counting Techniques

Advanced Time Correlated Single Photon Counting Techniques
Author: Wolfgang Becker
Publsiher: Springer Science & Business Media
Total Pages: 414
Release: 2005-12-19
Genre: Science
ISBN: 9783540288824

Download Advanced Time Correlated Single Photon Counting Techniques Book in PDF, Epub and Kindle

In 1984 Desmond O’Connor and David Phillips published their comprehensive book „Time-correlated Single Photon Counting“. At that time time-correlated s- gle photon counting, or TCSPC, was used primarily to record fluorescence decay functions of dye solutions in cuvettes. From the beginning, TCSPC was an am- ingly sensitive and accurate technique with excellent time-resolution. However, acquisition times were relatively slow due to the low repetition rate of the light sources and the limited speed of the electronics of the 70s and early 80s. Moreover, TCSPC was intrinsically one-dimensional, i.e. limited to the recording of the wa- form of a periodic light signal. Even with these limitations, it was a wonderful te- nique. More than 20 years have elapsed, and electronics and laser techniques have made impressive progress. The number of transistors on a single chip has approximately doubled every 18 months, resulting in a more than 1,000-fold increase in compl- ity and speed. The repetition rate and power of pulsed light sources have increased by about the same factor.

Advanced Time Correlated Single Photon Counting Applications

Advanced Time Correlated Single Photon Counting Applications
Author: Wolfgang Becker
Publsiher: Unknown
Total Pages: 135
Release: 2015
Genre: Electronic Book
ISBN: 331914930X

Download Advanced Time Correlated Single Photon Counting Applications Book in PDF, Epub and Kindle

This book is an attempt to bridge the gap between the instrumental principles of multi-dimensional time-correlated single photon counting (TCSPC) and typical applications of the technique. Written by an originator of the technique and by sucessful users, it covers the basic principles of the technique, its interaction with optical imaging methods and its application to a wide range of experimental tasks in life sciences and clinical research. The book is recommended for all users of time-resolved detection techniques in biology, bio-chemistry, spectroscopy of live systems, live cell microscopy, clinical imaging, spectroscopy of single molecules, and other applications that require the detection of low-level light signals at single-photon sensitivity and picosecond time resolution.

Advanced Photon Counting

Advanced Photon Counting
Author: Peter Kapusta,Michael Wahl,Rainer Erdmann
Publsiher: Springer
Total Pages: 370
Release: 2015-04-23
Genre: Science
ISBN: 9783319156361

Download Advanced Photon Counting Book in PDF, Epub and Kindle

This volume focuses on Time-Correlated Single Photon Counting (TCSPC), a powerful tool allowing luminescence lifetime measurements to be made with high temporal resolution, even on single molecules. Combining spectrum and lifetime provides a “fingerprint” for identifying such molecules in the presence of a background. Used together with confocal detection, this permits single-molecule spectroscopy and microscopy in addition to ensemble measurements, opening up an enormous range of hot life science applications such as fluorescence lifetime imaging (FLIM) and measurement of Förster Resonant Energy Transfer (FRET) for the investigation of protein folding and interaction. Several technology-related chapters present both the basics and current state-of-the-art, in particular of TCSPC electronics, photon detectors and lasers. The remaining chapters cover a broad range of applications and methodologies for experiments and data analysis, including the life sciences, defect centers in diamonds, super-resolution microscopy, and optical tomography. The chapters detailing new options arising from the combination of classic TCSPC and fluorescence lifetime with methods based on intensity fluctuation represent a particularly unique highlight.

Advanced Photon Counting

Advanced Photon Counting
Author: Peter Kapusta,Michael Wahl,Rainer Erdmann
Publsiher: Unknown
Total Pages: 135
Release: 2015
Genre: Electronic Book
ISBN: 3319156373

Download Advanced Photon Counting Book in PDF, Epub and Kindle

This volume focuses on Time-Correlated Single Photon Counting (TCSPC), a powerful tool allowing luminescence lifetime measurements to be made with high temporal resolution, even on single molecules. Combining spectrum and lifetime provides a "fingerprint" for identifying such molecules in the presence of a background. Used together with confocal detection, this permits single-molecule spectroscopy and microscopy in addition to ensemble measurements, opening up an enormous range of hot life science applications such as fluorescence lifetime imaging (FLIM) and measurement of Förster Resonant Energy Transfer (FRET) for the investigation of protein folding and interaction. Several technology-related chapters present both the basics and current state-of-the-art, in particular of TCSPC electronics, photon detectors and lasers. The remaining chapters cover a broad range of applications and methodologies for experiments and data analysis, including the life sciences, defect centers in diamonds, super-resolution microscopy, and optical tomography. The chapters detailing new options arising from the combination of classic TCSPC and fluorescence lifetime with methods based on intensity fluctuation represent a particularly unique highlight.

Advanced Time Correlated Single Photon Counting Applications

Advanced Time Correlated Single Photon Counting Applications
Author: Wolfgang Becker
Publsiher: Springer
Total Pages: 624
Release: 2015-04-13
Genre: Science
ISBN: 9783319149295

Download Advanced Time Correlated Single Photon Counting Applications Book in PDF, Epub and Kindle

This book is an attempt to bridge the gap between the instrumental principles of multi-dimensional time-correlated single photon counting (TCSPC) and typical applications of the technique. Written by an originator of the technique and by sucessful users, it covers the basic principles of the technique, its interaction with optical imaging methods and its application to a wide range of experimental tasks in life sciences and clinical research. The book is recommended for all users of time-resolved detection techniques in biology, bio-chemistry, spectroscopy of live systems, live cell microscopy, clinical imaging, spectroscopy of single molecules, and other applications that require the detection of low-level light signals at single-photon sensitivity and picosecond time resolution.

Time correlated single photon counting

Time correlated single photon counting
Author: Desmond O'Connor
Publsiher: Academic Press
Total Pages: 298
Release: 2012-12-02
Genre: Science
ISBN: 9780323141444

Download Time correlated single photon counting Book in PDF, Epub and Kindle

Time-correlated Single Photon Counting has been written in the hope that by relating the authors' experiences with a variety of different single photon counting systems, they may provide a useful service to users and potential users of this formidably sensitive technique. Of all the techniques available to obtain information on the rates of depopulation of excited electronic singlet states of molecular species, monitoring of fluorescence provides, in principle, the simplest and most direct measure of concentration. This volume comprises eight chapters, with the first focusing on the time dependence and applications of fluorescence. Succeeding chapters go on to discuss basic principles of the single photon counting lifetime measurement; light sources; photomultipliers; electronics; data analysis; nanosecond time-resolved emission spectroscopy; time dependence of fluorescence anisotropy. This book will be of interest to practitioners in the field of chemistry.

Advanced Optical Methods for Brain Imaging

Advanced Optical Methods for Brain Imaging
Author: Fu-Jen Kao,Gerd Keiser,Ankur Gogoi
Publsiher: Springer
Total Pages: 334
Release: 2018-05-14
Genre: Technology & Engineering
ISBN: 9789811090202

Download Advanced Optical Methods for Brain Imaging Book in PDF, Epub and Kindle

This book highlights the rapidly developing field of advanced optical methods for structural and functional brain imaging. As is known, the brain is the most poorly understood organ of a living body. It is indeed the most complex structure in the known universe and, thus, mapping of the brain has become one of the most exciting frontlines of contemporary research. Starting from the fundamentals of the brain, neurons and synapses, this book presents a streamlined and focused coverage of the core principles, theoretical and experimental approaches, and state-of-the-art applications of most of the currently used imaging methods in brain research. It presents contributions from international leaders on different photonics-based brain imaging modalities and techniques. Included are comprehensive descriptions of many of the technology driven spectacular advances made over the past few years that have allowed novel insights of the structural and functional details of neurons. The book is targeted at researchers, engineers and scientists who are working in the field of brain imaging, neuroscience and connectomics. Although this book is not intended to serve as a textbook, it will appeal to undergraduate students engaged in the specialization of brain imaging.

The bh TCSPC Handbook

The bh TCSPC Handbook
Author: Dr. Wolfgang Becker
Publsiher: Becker & Hickl GmbH
Total Pages: 995
Release: 2021-09-01
Genre: Science
ISBN: 9182736450XXX

Download The bh TCSPC Handbook Book in PDF, Epub and Kindle

Time-Correlated Single Photon Counting Modules SPC-130EMN, SPC-130EMNX, SPC-130IN, SPC-130INX, SPC-150N, SPC-150NX, SPC-150NXX, SPC-160, SPC-160PCIE, SPC-180N, SPC-180NX, SPC-180NXX Detectors, Lasers and Peripheral Devices Simple-Tau Systems Technical Principles TCSPC Applications FLIM Systems Applications in Life Sciences Clinical FLIM Applications SPCM Software SPCImage NG Data Analysis Software Time-correlated single photon counting (TCSPC) is an amazingly sensitive technique for recording low-level light signals with picosecond resolution and extremely high precision.TCSPC originates from the measurement of excited nuclear states and has been used since the late 60s [775, 1250]. For many years TCSPC was used primarily to record fluorescence decay curves of organic dyes in solution. Due to the low intensity and low repetition rate of the light sources and the limited speed of the electronics of the 70s and 80s the acquisition times were extremely long. More important, classic TCSPC was intrinsically one-dimensional, i.e. limited to the recording of the waveform of a periodic light signal. Light sources ceased to be a limitation when the first mode-locked Argon lasers and synchronously pumped dye lasers were introduced. For the recording electronics, the situation changed with the introduction of the SPC-300 modules of Becker & Hickl in 1993. Due to a new analog-to-digital conversion principle these modules could be used at photon count rates almost 100 times higher than the classic TCSPC devices. Moreover, the modules were able to record the photons of a large number of detectors simultaneously. They were thus able to record a photon distribution not only versus the time in a fluorescence decay but also versus aspatial coordinate or the wavelength of the photons. Multi-dimensional TCSPC was born. Within a few years, more dimensions were added to multidimensional TCSPC. Fast sequential recording was introduced with the SPC-430 in 1995, fast scanning with the SPC-535 in 1997. Time-tag recording was introduced with the SPC-431 in 1996; multi-module TCSPC systems followed in 1999. Since then, the Becker & Hickl TCSPC systems became bigger, faster and more flexible. Recent TCSPC modules, like the SPC-150NX or the SPC-180, can be configured for sequential recording, imaging, or time-tag recording by a simple software command. Multi-module systems, like the SPC-134EM and SPC-154, can be used for scanning at unprecedented count rates and acquisition speeds. Nevertheless, TCSPC still has the reputation to be an extremely sluggish technique unable to record any fast changes in the fluorescence or scattering behaviour of a sample. The multidimensional features of modern TCSPC are not commonly understood. Thus, many users do not make efficient use of their SPC modules. However, if appropriately used, multidimensional TCSPC techniques not only deliver superior results but also solve highly sophisticated measurement problems. This handbook is an attempt to help existing and potential users understand and make use of the advanced features of modern TCSPC. After an introduction into the bh TCSPC devices and associated detector, laser, and experiment control modules the principles of advanced TCSPC techniques are described. These include multidetector TCSPC, multiplexed TCSPC, sequential recording techniques, scanning techniques, parameter-tag recording, and multi-module TCSPC techniques. The next chapter describes the architecture of the bh SPC modules. A chapter about detectors gives a review of detector principles and of the parameters used to characterise detectors. It describes a number of detectors commonly used for TCSPC and gives advice about obtaining best performance from them. The implementation of bh SPC devices is described in the next part of the handbook. It includes principles and wiring diagrams for typical experiments, guidelines for first system setup, and advice for system optimisation. It describes dead-time, counting loss, and pile-up effects, detector effects, and effects related to the optical system. The next chapter of the handbook is dedicated to TCSPC applications. The first part of this chapter describes the measurement of fluorescence and anisotropy decay curves, multispectral lifetime experiments, recording of transient fluorescence lifetime phenomena, and measurements of phosphorescence decay curves. The second part of the chapter is dedicated to time-resolved laser scanning microscopy. It contains sections on a wide variety of fluorescence-lifetime imaging (FLIM) experiments and procedures, such as FLIM with various excitation principles, excitation sources, and detection principles, high-speed and time-series FLIM, Z-stack FLIM, simultaneous fluorescence and phosphorescence lifetime imaging (FLIM/PLIM), fluorescence lifetime-transient scanning (FLITS), and FLIM with special microscope configurations. A third part contains FLIM background knowledge: Signal-to-noise ratio, acquisition time, the effect of counting loss and pile-up, photobleaching, and fluorescence depolarisation on the recorded data. The book contains a large chapter on TCSPC applications, most of them in Biology. It contains sections on FLIM of molecular environment parameters in tissue, FLIM-based FRET measurements in cells, autofluorescence FLIM of biological tissue, plant physiology, and clinical FLIM applications. A section about diffuse optical tomography (DOT) by NIRS techniques includes breast imaging, static and functional brain imaging, perfusion measurement in the human brain, diffuse tissue spectroscopy, and small-animal imaging. Picosecond photon correlation, fluorescence correlation spectroscopy, burst-integrated fluorescence lifetime techniques, and photon counting histogram techniques are reviewed in the next sections. The last part of the application chapter gives an review of non-biological TCSPC applications like positron lifetime measurement, measurement of barrier discharges, remote sensing, metrological applications, and characterisation of detectors. The application chapter also includes practical hints about optical systems, detectors, and other technical aspects of the applications described. Another large chapter describes the SPCM operating software of the bh SPC modules. It describes the various user interface configurations, operation modes, the system and control parameters, the handling and display of the multidimensional data recorded by the modules, and the associated data file structure. The TCSPC Handbook also contains a chapter on the SPCImage NG fluorescence decay and FLIM data analysis software. It describes the general principles of fluorescence decay analysis, the calculation of fluorescence decay parameters and lifetime images by various decay models, pseudo-global analysis, multi-wavelength FLIM analysis, batch-processing of FLIM series, and analysis of PLIM data. The handbook ends with a list of more than 1200 references related to TCSPC, most of them being applications of the bh SPC devices.