An Introductory Course in Computational Neuroscience

An Introductory Course in Computational Neuroscience
Author: Paul Miller
Publsiher: MIT Press
Total Pages: 405
Release: 2018-10-02
Genre: Science
ISBN: 9780262038256

Download An Introductory Course in Computational Neuroscience Book in PDF, Epub and Kindle

A textbook for students with limited background in mathematics and computer coding, emphasizing computer tutorials that guide readers in producing models of neural behavior. This introductory text teaches students to understand, simulate, and analyze the complex behaviors of individual neurons and brain circuits. It is built around computer tutorials that guide students in producing models of neural behavior, with the associated Matlab code freely available online. From these models students learn how individual neurons function and how, when connected, neurons cooperate in a circuit. The book demonstrates through simulated models how oscillations, multistability, post-stimulus rebounds, and chaos can arise within either single neurons or circuits, and it explores their roles in the brain. The book first presents essential background in neuroscience, physics, mathematics, and Matlab, with explanations illustrated by many example problems. Subsequent chapters cover the neuron and spike production; single spike trains and the underlying cognitive processes; conductance-based models; the simulation of synaptic connections; firing-rate models of large-scale circuit operation; dynamical systems and their components; synaptic plasticity; and techniques for analysis of neuron population datasets, including principal components analysis, hidden Markov modeling, and Bayesian decoding. Accessible to undergraduates in life sciences with limited background in mathematics and computer coding, the book can be used in a “flipped” or “inverted” teaching approach, with class time devoted to hands-on work on the computer tutorials. It can also be a resource for graduate students in the life sciences who wish to gain computing skills and a deeper knowledge of neural function and neural circuits.

Computational Neuroscience

Computational Neuroscience
Author: Hanspeter A Mallot
Publsiher: Springer Science & Business Media
Total Pages: 135
Release: 2013-05-23
Genre: Technology & Engineering
ISBN: 9783319008615

Download Computational Neuroscience Book in PDF, Epub and Kindle

Computational Neuroscience - A First Course provides an essential introduction to computational neuroscience and equips readers with a fundamental understanding of modeling the nervous system at the membrane, cellular, and network level. The book, which grew out of a lecture series held regularly for more than ten years to graduate students in neuroscience with backgrounds in biology, psychology and medicine, takes its readers on a journey through three fundamental domains of computational neuroscience: membrane biophysics, systems theory and artificial neural networks. The required mathematical concepts are kept as intuitive and simple as possible throughout the book, making it fully accessible to readers who are less familiar with mathematics. Overall, Computational Neuroscience - A First Course represents an essential reference guide for all neuroscientists who use computational methods in their daily work, as well as for any theoretical scientist approaching the field of computational neuroscience.

Fundamentals of Computational Neuroscience

Fundamentals of Computational Neuroscience
Author: Thomas Trappenberg
Publsiher: Oxford University Press
Total Pages: 417
Release: 2010
Genre: Mathematics
ISBN: 9780199568413

Download Fundamentals of Computational Neuroscience Book in PDF, Epub and Kindle

The new edition of Fundamentals of Computational Neuroscience build on the success and strengths of the first edition. Completely redesigned and revised, it introduces the theoretical foundations of neuroscience with a focus on the nature of information processing in the brain.

From Neuron to Cognition via Computational Neuroscience

From Neuron to Cognition via Computational Neuroscience
Author: Michael A. Arbib,James J. Bonaiuto
Publsiher: MIT Press
Total Pages: 808
Release: 2016-11-04
Genre: Science
ISBN: 9780262335270

Download From Neuron to Cognition via Computational Neuroscience Book in PDF, Epub and Kindle

A comprehensive, integrated, and accessible textbook presenting core neuroscientific topics from a computational perspective, tracing a path from cells and circuits to behavior and cognition. This textbook presents a wide range of subjects in neuroscience from a computational perspective. It offers a comprehensive, integrated introduction to core topics, using computational tools to trace a path from neurons and circuits to behavior and cognition. Moreover, the chapters show how computational neuroscience—methods for modeling the causal interactions underlying neural systems—complements empirical research in advancing the understanding of brain and behavior. The chapters—all by leaders in the field, and carefully integrated by the editors—cover such subjects as action and motor control; neuroplasticity, neuromodulation, and reinforcement learning; vision; and language—the core of human cognition. The book can be used for advanced undergraduate or graduate level courses. It presents all necessary background in neuroscience beyond basic facts about neurons and synapses and general ideas about the structure and function of the human brain. Students should be familiar with differential equations and probability theory, and be able to pick up the basics of programming in MATLAB and/or Python. Slides, exercises, and other ancillary materials are freely available online, and many of the models described in the chapters are documented in the brain operation database, BODB (which is also described in a book chapter). Contributors Michael A. Arbib, Joseph Ayers, James Bednar, Andrej Bicanski, James J. Bonaiuto, Nicolas Brunel, Jean-Marie Cabelguen, Carmen Canavier, Angelo Cangelosi, Richard P. Cooper, Carlos R. Cortes, Nathaniel Daw, Paul Dean, Peter Ford Dominey, Pierre Enel, Jean-Marc Fellous, Stefano Fusi, Wulfram Gerstner, Frank Grasso, Jacqueline A. Griego, Ziad M. Hafed, Michael E. Hasselmo, Auke Ijspeert, Stephanie Jones, Daniel Kersten, Jeremie Knuesel, Owen Lewis, William W. Lytton, Tomaso Poggio, John Porrill, Tony J. Prescott, John Rinzel, Edmund Rolls, Jonathan Rubin, Nicolas Schweighofer, Mohamed A. Sherif, Malle A. Tagamets, Paul F. M. J. Verschure, Nathan Vierling-Claasen, Xiao-Jing Wang, Christopher Williams, Ransom Winder, Alan L. Yuille

Biophysics of Computation

Biophysics of Computation
Author: Christof Koch
Publsiher: Oxford University Press
Total Pages: 587
Release: 2004-10-28
Genre: Medical
ISBN: 9780195181999

Download Biophysics of Computation Book in PDF, Epub and Kindle

Neural network research often builds on the fiction that neurons are simple linear threshold units, completely neglecting the highly dynamic and complex nature of synapses, dendrites, and voltage-dependent ionic currents. Biophysics of Computation: Information Processing in Single Neurons challenges this notion, using richly detailed experimental and theoretical findings from cellular biophysics to explain the repertoire of computational functions available to single neurons. The author shows how individual nerve cells can multiply, integrate, or delay synaptic inputs and how information can be encoded in the voltage across the membrane, in the intracellular calcium concentration, or in the timing of individual spikes.Key topics covered include the linear cable equation; cable theory as applied to passive dendritic trees and dendritic spines; chemical and electrical synapses and how to treat them from a computational point of view; nonlinear interactions of synaptic input in passive and active dendritic trees; the Hodgkin-Huxley model of action potential generation and propagation; phase space analysis; linking stochastic ionic channels to membrane-dependent currents; calcium and potassium currents and their role in information processing; the role of diffusion, buffering and binding of calcium, and other messenger systems in information processing and storage; short- and long-term models of synaptic plasticity; simplified models of single cells; stochastic aspects of neuronal firing; the nature of the neuronal code; and unconventional models of sub-cellular computation.Biophysics of Computation: Information Processing in Single Neurons serves as an ideal text for advanced undergraduate and graduate courses in cellular biophysics, computational neuroscience, and neural networks, and will appeal to students and professionals in neuroscience, electrical and computer engineering, and physics.

Neuronal Dynamics

Neuronal Dynamics
Author: Wulfram Gerstner,Werner M. Kistler,Richard Naud,Liam Paninski
Publsiher: Cambridge University Press
Total Pages: 591
Release: 2014-07-24
Genre: Computers
ISBN: 9781107060838

Download Neuronal Dynamics Book in PDF, Epub and Kindle

This solid introduction uses the principles of physics and the tools of mathematics to approach fundamental questions of neuroscience.

An Introduction to Modeling Neuronal Dynamics

An Introduction to Modeling Neuronal Dynamics
Author: Christoph Börgers
Publsiher: Springer
Total Pages: 457
Release: 2017-04-17
Genre: Mathematics
ISBN: 9783319511719

Download An Introduction to Modeling Neuronal Dynamics Book in PDF, Epub and Kindle

This book is intended as a text for a one-semester course on Mathematical and Computational Neuroscience for upper-level undergraduate and beginning graduate students of mathematics, the natural sciences, engineering, or computer science. An undergraduate introduction to differential equations is more than enough mathematical background. Only a slim, high school-level background in physics is assumed, and none in biology. Topics include models of individual nerve cells and their dynamics, models of networks of neurons coupled by synapses and gap junctions, origins and functions of population rhythms in neuronal networks, and models of synaptic plasticity. An extensive online collection of Matlab programs generating the figures accompanies the book.

Principles of Computational Modelling in Neuroscience

Principles of Computational Modelling in Neuroscience
Author: David Sterratt,Bruce Graham,Andrew Gillies,Gaute Einevoll,David Willshaw
Publsiher: Cambridge University Press
Total Pages: 553
Release: 2023-10-05
Genre: Science
ISBN: 9781108483148

Download Principles of Computational Modelling in Neuroscience Book in PDF, Epub and Kindle

Learn to use computational modelling techniques to understand the nervous system at all levels, from ion channels to networks.