Analysis and Modeling of Coordinated Multi neuronal Activity

Analysis and Modeling of Coordinated Multi neuronal Activity
Author: Masami Tatsuno
Publsiher: Springer
Total Pages: 353
Release: 2014-11-13
Genre: Medical
ISBN: 9781493919697

Download Analysis and Modeling of Coordinated Multi neuronal Activity Book in PDF, Epub and Kindle

Since information in the brain is processed by the exchange of spikes among neurons, a study of such group dynamics is extremely important in understanding hippocampus dependent memory. These spike patterns and local field potentials (LFPs) have been analyzed by various statistical methods. These studies have led to important findings of memory information processing. For example, memory-trace replay, a reactivation of behaviorally induced neural patterns during subsequent sleep, has been suggested to play an important role in memory consolidation. It has also been suggested that a ripple/sharp wave event (one of the characteristics of LFPs in the hippocampus) and spiking activity in the cortex have a specific relationship that may facilitate the consolidation of hippocampal dependent memory from the hippocampus to the cortex. The book will provide a state-of-the-art finding of memory information processing through the analysis of multi-neuronal data. The first half of the book is devoted to this analysis aspect. Understanding memory information representation and its consolidation, however, cannot be achieved only by analyzing the data. It is extremely important to construct a computational model to seek an underlying mathematical principle. In other words, an entire picture of hippocampus dependent memory system would be elucidated through close collaboration among experiments, data analysis, and computational modeling. Not only does computational modeling benefit the data analysis of multi-electrode recordings, but it also provides useful insight for future experiments and analyses. The second half of the book will be devoted to the computational modeling of hippocampus-dependent memory.

Dynamic Neuroscience

Dynamic Neuroscience
Author: Zhe Chen,Sridevi V. Sarma
Publsiher: Springer
Total Pages: 327
Release: 2017-12-27
Genre: Technology & Engineering
ISBN: 9783319719764

Download Dynamic Neuroscience Book in PDF, Epub and Kindle

This book shows how to develop efficient quantitative methods to characterize neural data and extra information that reveals underlying dynamics and neurophysiological mechanisms. Written by active experts in the field, it contains an exchange of innovative ideas among researchers at both computational and experimental ends, as well as those at the interface. Authors discuss research challenges and new directions in emerging areas with two goals in mind: to collect recent advances in statistics, signal processing, modeling, and control methods in neuroscience; and to welcome and foster innovative or cross-disciplinary ideas along this line of research and discuss important research issues in neural data analysis. Making use of both tutorial and review materials, this book is written for neural, electrical, and biomedical engineers; computational neuroscientists; statisticians; computer scientists; and clinical engineers.

Representation in the Brain

Representation in the Brain
Author: Asim Roy,Leonid Perlovsky,Tarek Besold,Juyang Weng,Jonathan Edwards
Publsiher: Frontiers Media SA
Total Pages: 147
Release: 2018-09-28
Genre: Electronic Book
ISBN: 9782889455966

Download Representation in the Brain Book in PDF, Epub and Kindle

This eBook contains ten articles on the topic of representation of abstract concepts, both simple and complex, at the neural level in the brain. Seven of the articles directly address the main competing theories of mental representation – localist and distributed. Four of these articles argue – either on a theoretical basis or with neurophysiological evidence – that abstract concepts, simple or complex, exist (have to exist) at either the single cell level or in an exclusive neural cell assembly. There are three other papers that argue for sparse distributed representation (population coding) of abstract concepts. There are two other papers that discuss neural implementation of symbolic models. The remaining paper deals with learning of motor skills from imagery versus actual execution. A summary of these papers is provided in the Editorial.

Goal Directed Decision Making

Goal Directed Decision Making
Author: Richard W. Morris,Aaron Bornstein,Amitai Shenhav
Publsiher: Academic Press
Total Pages: 484
Release: 2018-08-23
Genre: Science
ISBN: 9780128120996

Download Goal Directed Decision Making Book in PDF, Epub and Kindle

Goal-Directed Decision Making: Computations and Neural Circuits examines the role of goal-directed choice. It begins with an examination of the computations performed by associated circuits, but then moves on to in-depth examinations on how goal-directed learning interacts with other forms of choice and response selection. This is the only book that embraces the multidisciplinary nature of this area of decision-making, integrating our knowledge of goal-directed decision-making from basic, computational, clinical, and ethology research into a single resource that is invaluable for neuroscientists, psychologists and computer scientists alike. The book presents discussions on the broader field of decision-making and how it has expanded to incorporate ideas related to flexible behaviors, such as cognitive control, economic choice, and Bayesian inference, as well as the influences that motivation, context and cues have on behavior and decision-making. Details the neural circuits functionally involved in goal-directed decision-making and the computations these circuits perform Discusses changes in goal-directed decision-making spurred by development and disorders, and within real-world applications, including social contexts and addiction Synthesizes neuroscience, psychology and computer science research to offer a unique perspective on the central and emerging issues in goal-directed decision-making

Closed Loop Neuroscience

Closed Loop Neuroscience
Author: Ahmed El Hady
Publsiher: Academic Press
Total Pages: 304
Release: 2016-09-08
Genre: Medical
ISBN: 9780128026410

Download Closed Loop Neuroscience Book in PDF, Epub and Kindle

Closed Loop Neuroscience addresses the technical aspects of closed loop neurophysiology, presenting the implementation of these approaches spanning several domains of neuroscience, from cellular and network neurophysiology, through sensory and motor systems, and then clinical therapeutic devices. Although closed-loop approaches have long been a part of the neuroscientific toolbox, these techniques are only now gaining popularity in research and clinical applications. As there is not yet a comprehensive methods book addressing the topic as a whole, this volume fills that gap, presenting state-of-the-art approaches and the technical advancements that enable their application to different scientific problems in neuroscience. Presents the first volume to offer researchers a comprehensive overview of the technical realities of employing closed loop techniques in their work Offers application to in-vitro, in-vivo, and hybrid systems Contains an emphasis on the actual techniques used rather than on specific results obtained Includes exhaustive protocols and descriptions of software and hardware, making it easy for readers to implement the proposed methodologies Encompasses the clinical/neuroprosthetic aspect and how these systems can also be used to contribute to our understanding of basic neurophysiology Edited work with chapters authored by leaders in the field from around the globe – the broadest, most expert coverage available

Statistical analysis of multi cell recordings linking population coding models to experimental data

Statistical analysis of multi cell recordings  linking population coding models to experimental data
Author: Matthias Bethge,Philipp Berens,Jakob Macke
Publsiher: Frontiers E-books
Total Pages: 209
Release: 2012-01-01
Genre: Electronic Book
ISBN: 9782889190126

Download Statistical analysis of multi cell recordings linking population coding models to experimental data Book in PDF, Epub and Kindle

Modern recording techniques such as multi-electrode arrays and 2-photon imaging are capable of simultaneously monitoring the activity of large neuronal ensembles at single cell resolution. This makes it possible to study the dynamics of neural populations of considerable size, and to gain insights into their computations and functional organization. The key challenge with multi-electrode recordings is their high-dimensional nature. Understanding this kind of data requires powerful statistical techniques for capturing the structure of the neural population responses and their relation with external stimuli or behavioral observations. Contributions to this Research Topic should advance statistical modeling of neural populations. Questions of particular interest include: 1. What classes of statistical methods are most useful for modeling population activity? 2. What are the main limitations of current approaches, and what can be done to overcome them? 3. How can statistical methods be used to empirically test existing models of (probabilistic) population coding? 4. What role can statistical methods play in formulating novel hypotheses about the principles of information processing in neural populations? This Research Topic is connected to a one day workshop at the Computational Neuroscience Meeting 2009 in Berlin (http://www.cnsorg.org/2009/workshops.shtml and http://www.kyb.tuebingen.mpg.de/bethge/workshops/cns2009/)

Nonlinear Analysis in Neuroscience and Behavioral Research

Nonlinear Analysis in Neuroscience and Behavioral Research
Author: Tobias A. Mattei
Publsiher: Frontiers Media SA
Total Pages: 273
Release: 2016-10-31
Genre: Neurosciences. Biological psychiatry. Neuropsychiatry
ISBN: 9782889199969

Download Nonlinear Analysis in Neuroscience and Behavioral Research Book in PDF, Epub and Kindle

Although nonlinear dynamics have been mastered by physicists and mathematicians for a long time (as most physical systems are inherently nonlinear in nature), the recent successful application of nonlinear methods to modeling and predicting several evolutionary, ecological, physiological, and biochemical processes has generated great interest and enthusiasm among researchers in computational neuroscience and cognitive psychology. Additionally, in the last years it has been demonstrated that nonlinear analysis can be successfully used to model not only basic cellular and molecular data but also complex cognitive processes and behavioral interactions. The theoretical features of nonlinear systems (such unstable periodic orbits, period-doubling bifurcations and phase space dynamics) have already been successfully applied by several research groups to analyze the behavior of a variety of neuronal and cognitive processes. Additionally the concept of strange attractors has lead to a new understanding of information processing which considers higher cognitive functions (such as language, attention, memory and decision making) as complex systems emerging from the dynamic interaction between parallel streams of information flowing between highly interconnected neuronal clusters organized in a widely distributed circuit and modulated by key central nodes. Furthermore, the paradigm of self-organization derived from the nonlinear dynamics theory has offered an interesting account of the phenomenon of emergence of new complex cognitive structures from random and non-deterministic patterns, similarly to what has been previously observed in nonlinear studies of fluid dynamics. Finally, the challenges of coupling massive amount of data related to brain function generated from new research fields in experimental neuroscience (such as magnetoencephalography, optogenetics and single-cell intra-operative recordings of neuronal activity) have generated the necessity of new research strategies which incorporate complex pattern analysis as an important feature of their algorithms. Up to now nonlinear dynamics has already been successfully employed to model both basic single and multiple neurons activity (such as single-cell firing patterns, neural networks synchronization, autonomic activity, electroencephalographic measurements, and noise modulation in the cerebellum), as well as higher cognitive functions and complex psychiatric disorders. Similarly, previous experimental studies have suggested that several cognitive functions can be successfully modeled with basis on the transient activity of large-scale brain networks in the presence of noise. Such studies have demonstrated that it is possible to represent typical decision-making paradigms of neuroeconomics by dynamic models governed by ordinary differential equations with a finite number of possibilities at the decision points and basic heuristic rules which incorporate variable degrees of uncertainty. This e-book has include frontline research in computational neuroscience and cognitive psychology involving applications of nonlinear analysis, especially regarding the representation and modeling of complex neural and cognitive systems. Several experts teams around the world have provided frontline theoretical and experimental contributions (as well as reviews, perspectives and commentaries) in the fields of nonlinear modeling of cognitive systems, chaotic dynamics in computational neuroscience, fractal analysis of biological brain data, nonlinear dynamics in neural networks research, nonlinear and fuzzy logics in complex neural systems, nonlinear analysis of psychiatric disorders and dynamic modeling of sensorimotor coordination. Rather than a comprehensive compilation of the possible topics in neuroscience and cognitive research to which non-linear may be used, this e-book intends to provide some illustrative examples of the broad range of

Brain Dynamics

Brain Dynamics
Author: Hermann Haken
Publsiher: Springer Science & Business Media
Total Pages: 249
Release: 2006-11-22
Genre: Science
ISBN: 9783540462842

Download Brain Dynamics Book in PDF, Epub and Kindle

This book addresses a large variety of models in mathematical and computational neuroscience. It is written for the experts as well as for graduate students wishing to enter this fascinating field of research. The author studies the behaviour of large neural networks composed of many neurons coupled by spike trains. An analysis of phase locking via sinusoidal couplings leading to various kinds of movement coordination is included.