Analyticity and Sparsity in Uncertainty Quantification for PDEs with Gaussian Random Field Inputs

Analyticity and Sparsity in Uncertainty Quantification for PDEs with Gaussian Random Field Inputs
Author: Dinh Dũng,Van Kien Nguyen,Christoph Schwab,Jakob Zech
Publsiher: Springer Nature
Total Pages: 216
Release: 2023-11-16
Genre: Mathematics
ISBN: 9783031383847

Download Analyticity and Sparsity in Uncertainty Quantification for PDEs with Gaussian Random Field Inputs Book in PDF, Epub and Kindle

The present book develops the mathematical and numerical analysis of linear, elliptic and parabolic partial differential equations (PDEs) with coefficients whose logarithms are modelled as Gaussian random fields (GRFs), in polygonal and polyhedral physical domains. Both, forward and Bayesian inverse PDE problems subject to GRF priors are considered. Adopting a pathwise, affine-parametric representation of the GRFs, turns the random PDEs into equivalent, countably-parametric, deterministic PDEs, with nonuniform ellipticity constants. A detailed sparsity analysis of Wiener-Hermite polynomial chaos expansions of the corresponding parametric PDE solution families by analytic continuation into the complex domain is developed, in corner- and edge-weighted function spaces on the physical domain. The presented Algorithms and results are relevant for the mathematical analysis of many approximation methods for PDEs with GRF inputs, such as model order reduction, neural network and tensor-formatted surrogates of parametric solution families. They are expected to impact computational uncertainty quantification subject to GRF models of uncertainty in PDEs, and are of interest for researchers and graduate students in both, applied and computational mathematics, as well as in computational science and engineering.

Handbook of Uncertainty Quantification

Handbook of Uncertainty Quantification
Author: Roger Ghanem,David Higdon,Howman Owhadi
Publsiher: Springer
Total Pages: 0
Release: 2016-05-08
Genre: Mathematics
ISBN: 331912384X

Download Handbook of Uncertainty Quantification Book in PDF, Epub and Kindle

The topic of Uncertainty Quantification (UQ) has witnessed massive developments in response to the promise of achieving risk mitigation through scientific prediction. It has led to the integration of ideas from mathematics, statistics and engineering being used to lend credence to predictive assessments of risk but also to design actions (by engineers, scientists and investors) that are consistent with risk aversion. The objective of this Handbook is to facilitate the dissemination of the forefront of UQ ideas to their audiences. We recognize that these audiences are varied, with interests ranging from theory to application, and from research to development and even execution.

Bayesian Approach to Inverse Problems

Bayesian Approach to Inverse Problems
Author: Jérôme Idier
Publsiher: John Wiley & Sons
Total Pages: 322
Release: 2013-03-01
Genre: Mathematics
ISBN: 9781118623695

Download Bayesian Approach to Inverse Problems Book in PDF, Epub and Kindle

Many scientific, medical or engineering problems raise the issue of recovering some physical quantities from indirect measurements; for instance, detecting or quantifying flaws or cracks within a material from acoustic or electromagnetic measurements at its surface is an essential problem of non-destructive evaluation. The concept of inverse problems precisely originates from the idea of inverting the laws of physics to recover a quantity of interest from measurable data. Unfortunately, most inverse problems are ill-posed, which means that precise and stable solutions are not easy to devise. Regularization is the key concept to solve inverse problems. The goal of this book is to deal with inverse problems and regularized solutions using the Bayesian statistical tools, with a particular view to signal and image estimation. The first three chapters bring the theoretical notions that make it possible to cast inverse problems within a mathematical framework. The next three chapters address the fundamental inverse problem of deconvolution in a comprehensive manner. Chapters 7 and 8 deal with advanced statistical questions linked to image estimation. In the last five chapters, the main tools introduced in the previous chapters are put into a practical context in important applicative areas, such as astronomy or medical imaging.

Certified Reduced Basis Methods for Parametrized Partial Differential Equations

Certified Reduced Basis Methods for Parametrized Partial Differential Equations
Author: Jan S Hesthaven,Gianluigi Rozza,Benjamin Stamm
Publsiher: Springer
Total Pages: 131
Release: 2015-08-20
Genre: Mathematics
ISBN: 9783319224701

Download Certified Reduced Basis Methods for Parametrized Partial Differential Equations Book in PDF, Epub and Kindle

This book provides a thorough introduction to the mathematical and algorithmic aspects of certified reduced basis methods for parametrized partial differential equations. Central aspects ranging from model construction, error estimation and computational efficiency to empirical interpolation methods are discussed in detail for coercive problems. More advanced aspects associated with time-dependent problems, non-compliant and non-coercive problems and applications with geometric variation are also discussed as examples.

An Introduction to Computational Stochastic PDEs

An Introduction to Computational Stochastic PDEs
Author: Gabriel J. Lord,Catherine E. Powell,Tony Shardlow
Publsiher: Cambridge University Press
Total Pages: 0
Release: 2014-07-16
Genre: Mathematics
ISBN: 1139898132

Download An Introduction to Computational Stochastic PDEs Book in PDF, Epub and Kindle

This book gives a comprehensive introduction to numerical methods and analysis of stochastic processes, random fields and stochastic differential equations, and offers graduate students and researchers powerful tools for understanding uncertainty quantification for risk analysis. Coverage includes traditional stochastic ODEs with white noise forcing, strong and weak approximation, and the multi-level Monte Carlo method. Later chapters apply the theory of random fields to the numerical solution of elliptic PDEs with correlated random data, discuss the Monte Carlo method, and introduce stochastic Galerkin finite-element methods. Finally, stochastic parabolic PDEs are developed. Assuming little previous exposure to probability and statistics, theory is developed in tandem with state-of the art computational methods through worked examples, exercises, theorems and proofs. The set of MATLAB codes included (and downloadable) allows readers to perform computations themselves and solve the test problems discussed. Practical examples are drawn from finance, mathematical biology, neuroscience, fluid flow modeling and materials science.

Introduction to Uncertainty Quantification

Introduction to Uncertainty Quantification
Author: T.J. Sullivan
Publsiher: Springer
Total Pages: 342
Release: 2015-12-14
Genre: Mathematics
ISBN: 9783319233956

Download Introduction to Uncertainty Quantification Book in PDF, Epub and Kindle

This text provides a framework in which the main objectives of the field of uncertainty quantification (UQ) are defined and an overview of the range of mathematical methods by which they can be achieved. Complete with exercises throughout, the book will equip readers with both theoretical understanding and practical experience of the key mathematical and algorithmic tools underlying the treatment of uncertainty in modern applied mathematics. Students and readers alike are encouraged to apply the mathematical methods discussed in this book to their own favorite problems to understand their strengths and weaknesses, also making the text suitable for a self-study. Uncertainty quantification is a topic of increasing practical importance at the intersection of applied mathematics, statistics, computation and numerous application areas in science and engineering. This text is designed as an introduction to UQ for senior undergraduate and graduate students with a mathematical or statistical background and also for researchers from the mathematical sciences or from applications areas who are interested in the field. T. J. Sullivan was Warwick Zeeman Lecturer at the Mathematics Institute of the University of Warwick, United Kingdom, from 2012 to 2015. Since 2015, he is Junior Professor of Applied Mathematics at the Free University of Berlin, Germany, with specialism in Uncertainty and Risk Quantification.

Uncertainty Quantification for Hyperbolic and Kinetic Equations

Uncertainty Quantification for Hyperbolic and Kinetic Equations
Author: Shi Jin,Lorenzo Pareschi
Publsiher: Springer
Total Pages: 277
Release: 2018-03-20
Genre: Mathematics
ISBN: 9783319671109

Download Uncertainty Quantification for Hyperbolic and Kinetic Equations Book in PDF, Epub and Kindle

This book explores recent advances in uncertainty quantification for hyperbolic, kinetic, and related problems. The contributions address a range of different aspects, including: polynomial chaos expansions, perturbation methods, multi-level Monte Carlo methods, importance sampling, and moment methods. The interest in these topics is rapidly growing, as their applications have now expanded to many areas in engineering, physics, biology and the social sciences. Accordingly, the book provides the scientific community with a topical overview of the latest research efforts.

Spectral Methods for Uncertainty Quantification

Spectral Methods for Uncertainty Quantification
Author: Olivier Le Maitre,Omar M Knio
Publsiher: Springer Science & Business Media
Total Pages: 542
Release: 2010-03-11
Genre: Science
ISBN: 9789048135202

Download Spectral Methods for Uncertainty Quantification Book in PDF, Epub and Kindle

This book deals with the application of spectral methods to problems of uncertainty propagation and quanti?cation in model-based computations. It speci?cally focuses on computational and algorithmic features of these methods which are most useful in dealing with models based on partial differential equations, with special att- tion to models arising in simulations of ?uid ?ows. Implementations are illustrated through applications to elementary problems, as well as more elaborate examples selected from the authors’ interests in incompressible vortex-dominated ?ows and compressible ?ows at low Mach numbers. Spectral stochastic methods are probabilistic in nature, and are consequently rooted in the rich mathematical foundation associated with probability and measure spaces. Despite the authors’ fascination with this foundation, the discussion only - ludes to those theoretical aspects needed to set the stage for subsequent applications. The book is authored by practitioners, and is primarily intended for researchers or graduate students in computational mathematics, physics, or ?uid dynamics. The book assumes familiarity with elementary methods for the numerical solution of time-dependent, partial differential equations; prior experience with spectral me- ods is naturally helpful though not essential. Full appreciation of elaborate examples in computational ?uid dynamics (CFD) would require familiarity with key, and in some cases delicate, features of the associated numerical methods. Besides these shortcomings, our aim is to treat algorithmic and computational aspects of spectral stochastic methods with details suf?cient to address and reconstruct all but those highly elaborate examples.