Applications of Green s Functions in Science and Engineering

Applications of Green s Functions in Science and Engineering
Author: Michael D. Greenberg
Publsiher: Courier Dover Publications
Total Pages: 164
Release: 2015-08-19
Genre: Mathematics
ISBN: 9780486797960

Download Applications of Green s Functions in Science and Engineering Book in PDF, Epub and Kindle

In addition to coverage of Green's function, this concise introductory treatment examines boundary value problems, generalized functions, eigenfunction expansions, partial differential equations, and acoustics. Suitable for undergraduate and graduate students. 1971 edition.

Green s Functions

Green s Functions
Author: Yuri A. Melnikov,Max Y. Melnikov
Publsiher: Walter de Gruyter
Total Pages: 447
Release: 2012-04-02
Genre: Mathematics
ISBN: 9783110253399

Download Green s Functions Book in PDF, Epub and Kindle

This monograph is looking at applied elliptic and parabolic type partial differential equations in two variables. The elliptic type includes the Laplace, static Klein-Gordon and biharmonic equation. The parabolic type is represented by the classical heat equation and the Black-Scholes equation which has emerged as a mathematical model in financial mathematics. This book is a useful source for everyone who is studying or working in the fields of science, finance, or engineering that involve practical solution of partial differential equations.

Green s Functions with Applications

Green s Functions with Applications
Author: Dean G. Duffy
Publsiher: CRC Press
Total Pages: 685
Release: 2015-03-10
Genre: Mathematics
ISBN: 9781482251036

Download Green s Functions with Applications Book in PDF, Epub and Kindle

Since publication of the first edition over a decade ago, Green’s Functions with Applications has provided applied scientists and engineers with a systematic approach to the various methods available for deriving a Green’s function. This fully revised Second Edition retains the same purpose, but has been meticulously updated to reflect the current state of the art. The book opens with necessary background information: a new chapter on the historical development of the Green’s function, coverage of the Fourier and Laplace transforms, a discussion of the classical special functions of Bessel functions and Legendre polynomials, and a review of the Dirac delta function. The text then presents Green’s functions for each class of differential equation (ordinary differential, wave, heat, and Helmholtz equations) according to the number of spatial dimensions and the geometry of the domain. Detailing step-by-step methods for finding and computing Green’s functions, each chapter contains a special section devoted to topics where Green’s functions particularly are useful. For example, in the case of the wave equation, Green’s functions are beneficial in describing diffraction and waves. To aid readers in developing practical skills for finding Green’s functions, worked examples, problem sets, and illustrations from acoustics, applied mechanics, antennas, and the stability of fluids and plasmas are featured throughout the text. A new chapter on numerical methods closes the book. Included solutions and hundreds of references to the literature on the construction and use of Green's functions make Green’s Functions with Applications, Second Edition a valuable sourcebook for practitioners as well as graduate students in the sciences and engineering.

Mathematical Methods in Science and Engineering

Mathematical Methods in Science and Engineering
Author: Selcuk S. Bayin
Publsiher: John Wiley & Sons
Total Pages: 710
Release: 2006-09-01
Genre: Mathematics
ISBN: 9780470047415

Download Mathematical Methods in Science and Engineering Book in PDF, Epub and Kindle

An innovative treatment of mathematical methods for a multidisciplinary audience Clearly and elegantly presented, Mathematical Methods in Science and Engineering provides a coherent treatment of mathematical methods, bringing advanced mathematical tools to a multidisciplinary audience. The growing interest in interdisciplinary studies has brought scientists from many disciplines such as physics, mathematics, chemistry, biology, economics, and finance together, which has increased the demand for courses in upper-level mathematical techniques. This book succeeds in not only being tuned in to the existing practical needs of this multidisciplinary audience, but also plays a role in the development of new interdisciplinary science by introducing new techniques to students and researchers. Mathematical Methods in Science and Engineering's modular structure affords instructors enough flexibility to use this book for several different advanced undergraduate and graduate level courses. Each chapter serves as a review of its subject and can be read independently, thus it also serves as a valuable reference and refresher for scientists and beginning researchers. There are a growing number of research areas in applied sciences, such as earthquakes, rupture, financial markets, and crashes, that employ the techniques of fractional calculus and path integrals. The book's two unique chapters on these subjects, written in a style that makes these advanced techniques accessible to a multidisciplinary audience, are an indispensable tool for researchers and instructors who want to add something new to their compulsory courses. Mathematical Methods in Science and Engineering includes: * Comprehensive chapters on coordinates and tensors and on continuous groups and their representations * An emphasis on physical motivation and the multidisciplinary nature of the methods discussed * A coherent treatment of carefully selected topics in a style that makes advanced mathematical tools accessible to a multidisciplinary audience * Exercises at the end of every chapter and plentiful examples throughout the book Mathematical Methods in Science and Engineering is not only appropriate as a text for advanced undergraduate and graduate physics programs, but is also appropriate for engineering science and mechanical engineering departments due to its unique chapter coverage and easily accessible style. Readers are expected to be familiar with topics typically covered in the first three years of science and engineering undergraduate programs. Thoroughly class-tested, this book has been used in classes by more than 1,000 students over the past eighteen years.

Green s Functions and Linear Differential Equations

Green s Functions and Linear Differential Equations
Author: Prem K. Kythe
Publsiher: CRC Press
Total Pages: 382
Release: 2011-01-21
Genre: Mathematics
ISBN: 9781439840092

Download Green s Functions and Linear Differential Equations Book in PDF, Epub and Kindle

Green's Functions and Linear Differential Equations: Theory, Applications, and Computation presents a variety of methods to solve linear ordinary differential equations (ODEs) and partial differential equations (PDEs). The text provides a sufficient theoretical basis to understand Green's function method, which is used to solve initial and boundary

Green s Functions in Applied Mechanics

Green s Functions in Applied Mechanics
Author: Yu. A. Melnikov
Publsiher: Computational Mechanics
Total Pages: 296
Release: 1995
Genre: Science
ISBN: STANFORD:36105018234315

Download Green s Functions in Applied Mechanics Book in PDF, Epub and Kindle

This book is probably the first attempt to make this special topic in the field of partial differential equations accessible to a large audience. The book contains a description of how to construct Green's functions and matrices for elliptic partial differential equations. A number of applications are also presented showing the computational capability of the Green's functions method, and indicate possible ways to put into practice the results of the present study.

Elements of Green s Functions and Propagation

Elements of Green s Functions and Propagation
Author: Gabriel Barton
Publsiher: Oxford University Press
Total Pages: 484
Release: 1989
Genre: Mathematics
ISBN: 0198519982

Download Elements of Green s Functions and Propagation Book in PDF, Epub and Kindle

This text takes the student with a background in undergraduate physics and mathematics towards the skills and insights needed for graduate work in theoretical physics. The author uses Green's functions to explore the physics of potentials, diffusion, and waves. These are important phenomena in their own right, but this study of the partial differential equations describing them also prepares the student for more advanced applications in many-body physics and field theory. Calculations are carried through in enough detail for self-study, and case histories illustrate the interplay between physical insight and mathematical formalism. The aim is to develop the habit of dialogue with the equations and the craftsmanship this fosters in tackling the problem. The book is based on the author's extensive teaching experience.

Green s Functions with Applications Second Edition

Green   s Functions with Applications  Second Edition
Author: Dean G. Duffy
Publsiher: Chapman and Hall/CRC
Total Pages: 0
Release: 2015-03-10
Genre: Mathematics
ISBN: 1482251027

Download Green s Functions with Applications Second Edition Book in PDF, Epub and Kindle

Since publication of the first edition over a decade ago, Green’s Functions with Applications has provided applied scientists and engineers with a systematic approach to the various methods available for deriving a Green’s function. This fully revised Second Edition retains the same purpose, but has been meticulously updated to reflect the current state of the art. The book opens with necessary background information: a new chapter on the historical development of the Green’s function, coverage of the Fourier and Laplace transforms, a discussion of the classical special functions of Bessel functions and Legendre polynomials, and a review of the Dirac delta function. The text then presents Green’s functions for each class of differential equation (ordinary differential, wave, heat, and Helmholtz equations) according to the number of spatial dimensions and the geometry of the domain. Detailing step-by-step methods for finding and computing Green’s functions, each chapter contains a special section devoted to topics where Green’s functions particularly are useful. For example, in the case of the wave equation, Green’s functions are beneficial in describing diffraction and waves. To aid readers in developing practical skills for finding Green’s functions, worked examples, problem sets, and illustrations from acoustics, applied mechanics, antennas, and the stability of fluids and plasmas are featured throughout the text. A new chapter on numerical methods closes the book. Included solutions and hundreds of references to the literature on the construction and use of Green's functions make Green’s Functions with Applications, Second Edition a valuable sourcebook for practitioners as well as graduate students in the sciences and engineering.