Basic Semiconductor Physics

Basic Semiconductor Physics
Author: Chihiro Hamaguchi
Publsiher: Springer Science & Business Media
Total Pages: 444
Release: 2013-04-17
Genre: Technology & Engineering
ISBN: 9783662046562

Download Basic Semiconductor Physics Book in PDF, Epub and Kindle

A detailed description of the basic physics of semiconductors. All the important equations describing the properties of these materials are derived without the help of other textbooks. The reader is assumed to have only a basic command of mathematics and some elementary semiconductor physics. The text covers a wide range of important semiconductor phenomena, from the simple to the advanced.

Basic Semiconductor Physics

Basic Semiconductor Physics
Author: Chihiro Hamaguchi
Publsiher: Springer
Total Pages: 709
Release: 2017-11-27
Genre: Technology & Engineering
ISBN: 9783319668604

Download Basic Semiconductor Physics Book in PDF, Epub and Kindle

The new edition of this textbook presents a detailed description of basic semiconductor physics. The text covers a wide range of important phenomena in semiconductors, from the simple to the advanced. Four different methods of energy band calculations in the full band region are explained: local empirical pseudopotential, non-local pseudopotential, KP perturbation and tight-binding methods. The effective mass approximation and electron motion in a periodic potential, Boltzmann transport equation and deformation potentials used for analysis of transport properties are discussed. Further, the book examines experiments and theoretical analyses of cyclotron resonance in detail. Optical and transport properties, magneto-transport, two-dimensional electron gas transport (HEMT and MOSFET) and quantum transport are reviewed, while optical transition, electron-phonon interaction and electron mobility are also addressed. Energy and electronic structure of a quantum dot (artificial atom) are explained with the help of Slater determinants. The physics of semiconductor lasers is also described, including Einstein coefficients, stimulated emission, spontaneous emission, laser gain, double heterostructures, blue lasers, optical confinement, laser modes, and strained quantum well lasers, offering insights into the physics of various kinds of semiconductor lasers. In this third edition, energy band calculations in full band zone with spin-orbit interaction are presented, showing all the matrix elements and equipping the reader to prepare computer programs of energy band calculations. The Luttinger Hamiltonian is discussed and used to analyze the valence band structure. Numerical calculations of scattering rate, relaxation time, and mobility are presented for typical semiconductors, which are very helpful for understanding of transport. Energy band structures and effective masses of nitrides such as GaN, InN, AlN and their ternary alloys are discussed because they are very important materials for the blue light emission, and high power devices with and high frequency. Learning and teaching with this textbook is supported by problems and solutions in the end of the chapters. The book is written for bachelor and upper undergraduate students of physics and engineering.

Semiconductor Physics and Devices

Semiconductor Physics and Devices
Author: Donald A. Neamen
Publsiher: Unknown
Total Pages: 746
Release: 2003
Genre: Semiconductores
ISBN: 0071198628

Download Semiconductor Physics and Devices Book in PDF, Epub and Kindle

This text aims to provide the fundamentals necessary to understand semiconductor device characteristics, operations and limitations. Quantum mechanics and quantum theory are explored, and this background helps give students a deeper understanding of the essentials of physics and semiconductors.

Introduction to Semiconductor Physics

Introduction to Semiconductor Physics
Author: Holger T Grahn
Publsiher: World Scientific Publishing Company
Total Pages: 196
Release: 1999-04-19
Genre: Science
ISBN: 9789813105157

Download Introduction to Semiconductor Physics Book in PDF, Epub and Kindle

This book covers the physics of semiconductors on an introductory level, assuming that the reader already has some knowledge of condensed matter physics. Crystal structure, band structure, carrier transport, phonons, scattering processes and optical properties are presented for typical semiconductors such as silicon, but III–V and II–VI compounds are also included. In view of the increasing importance of wide-gap semiconductors, the electronic and optical properties of these materials are dealt with too.

The Physics of Semiconductors

The Physics of Semiconductors
Author: Marius Grundmann
Publsiher: Springer Nature
Total Pages: 905
Release: 2021-03-06
Genre: Technology & Engineering
ISBN: 9783030515690

Download The Physics of Semiconductors Book in PDF, Epub and Kindle

The 4th edition of this highly successful textbook features copious material for a complete upper-level undergraduate or graduate course, guiding readers to the point where they can choose a specialized topic and begin supervised research. The textbook provides an integrated approach beginning from the essential principles of solid-state and semiconductor physics to their use in various classic and modern semiconductor devices for applications in electronics and photonics. The text highlights many practical aspects of semiconductors: alloys, strain, heterostructures, nanostructures, amorphous semiconductors, and noise, which are essential aspects of modern semiconductor research but often omitted in other textbooks. This textbook also covers advanced topics, such as Bragg mirrors, resonators, polarized and magnetic semiconductors, nanowires, quantum dots, multi-junction solar cells, thin film transistors, and transparent conductive oxides. The 4th edition includes many updates and chapters on 2D materials and aspects of topology. The text derives explicit formulas for many results to facilitate a better understanding of the topics. Having evolved from a highly regarded two-semester course on the topic, The Physics of Semiconductors requires little or no prior knowledge of solid-state physics. More than 2100 references guide the reader to historic and current literature including original papers, review articles and topical books, providing a go-to point of reference for experienced researchers as well.

Fundamentals of Semiconductors

Fundamentals of Semiconductors
Author: Peter YU,Manuel Cardona
Publsiher: Springer Science & Business Media
Total Pages: 645
Release: 2007-05-08
Genre: Technology & Engineering
ISBN: 9783540264750

Download Fundamentals of Semiconductors Book in PDF, Epub and Kindle

Excellent bridge between general solid-state physics textbook and research articles packed with providing detailed explanations of the electronic, vibrational, transport, and optical properties of semiconductors "The most striking feature of the book is its modern outlook ... provides a wonderful foundation. The most wonderful feature is its efficient style of exposition ... an excellent book." Physics Today "Presents the theoretical derivations carefully and in detail and gives thorough discussions of the experimental results it presents. This makes it an excellent textbook both for learners and for more experienced researchers wishing to check facts. I have enjoyed reading it and strongly recommend it as a text for anyone working with semiconductors ... I know of no better text ... I am sure most semiconductor physicists will find this book useful and I recommend it to them." Contemporary Physics Offers much new material: an extensive appendix about the important and by now well-established, deep center known as the DX center, additional problems and the solutions to over fifty of the problems at the end of the various chapters.

Semiconductor Physics

Semiconductor Physics
Author: Karlheinz Seeger
Publsiher: Springer Science & Business Media
Total Pages: 476
Release: 2013-06-29
Genre: Technology & Engineering
ISBN: 9783662023518

Download Semiconductor Physics Book in PDF, Epub and Kindle

The first edition of "Semiconductor Physics" was published in 1973 by Springer-Verlag Wien-New York as a paperback in the Springer Study Edition. In 1977, a Russian translation by Professor Yu. K. Pozhela and coworkers at Vilnius/USSR was published by Izdatelstvo "MIR", Mo scow. Since then new ideas have been developed in the field of semi conductors such as electron hole droplets, dangling bond saturation in amorphous silicon by hydrogen, or the determination of the fine struc ture constant from surface quantization in inversion layers. New tech niques such as molecular beam epitaxy which has made the realization of the Esaki superlattice possible, deep level transient spectroscopy, and refined a. c. Hall techniques have evolved. Now that the Viennese edition is about to go out of print, Springer-Verlag, Berlin-Heidelberg-New York is giving me the opportunity to include these new subjects in a monograph to appear in the Solid-State Sciences series. Again it has been the intention to cover the field of semiconductor physics comprehensively, although some chapters such as diffusion of hot carriers and their galvanomagnetic phenomena, as well as super conducting degenerate semiconductors and the appendices, had to go for commercial reasons. The emphasis is more on physics than on device as pects.

Semiconductor Devices

Semiconductor Devices
Author: Jasprit Singh
Publsiher: John Wiley & Sons
Total Pages: 583
Release: 2000-08-03
Genre: Technology & Engineering
ISBN: 9780471362456

Download Semiconductor Devices Book in PDF, Epub and Kindle

From physical process to practical applications - Singh makes the complexities of modern semiconductor devices clear! The semiconductor devices that are driving today's information, technologies may seem remarkably complex, but they don't have to be impossible to understand. Filled with figures, flowcharts, and solved examples, Jasprit Singh's Semiconductor Devices provides an accessible, well-balanced introduction to semiconductor physics and its application to modern devices. Beginning with the physical process behind semiconductor devices, Singh clearly explains difficult topics, including bandstructure, effective masses, holes, doping, carrier transport, and lifetimes. Following these physical fundamentals, you'll explore the operation of important semiconductor devices, such as diodes, transistors, light emitters, and detectors, along with issues relating to the optimization of device performance. Features Over 150 solved examples, integrated throughout the text, clarify difficult concepts. End-of-chapter summary tables and hundreds of figures reinforce the intricacies of modern semiconductor devices. Discussion of device optimization issues explains why you have to trade one performance against another in devices. Shows the relationship of physical parameters to SPICE parameters and its impact on circuit issues. Technology Roadmaps outline what's currently happening in the field and present a look at where device technology is headed in the future. A Bit of History sections, included in each chapter, explore the history of the concepts developed and provide a snapshot of the personalities involved and the challenges of the time.