Circuit and Layout Techniques for Soft error resilient Digital CMOS Circuits

Circuit and Layout Techniques for Soft error resilient Digital CMOS Circuits
Author: Hsiao-Heng Kelin Lee
Publsiher: Stanford University
Total Pages: 156
Release: 2011
Genre: Electronic Book
ISBN: STANFORD:dn086pk6955

Download Circuit and Layout Techniques for Soft error resilient Digital CMOS Circuits Book in PDF, Epub and Kindle

Radiation-induced soft errors are a major concern for modern digital circuits, especially memory elements. Unlike large Random Access Memories that can be protected using error-correcting codes and bit interleaving, soft error protection of sequential elements, i.e. latches and flip-flops, is challenging. Traditional techniques for designing soft-error-resilient sequential elements generally address single node errors, or Single Event Upsets (SEUs). However, with technology scaling, the charge deposited by a single particle strike can be simultaneously collected and shared by multiple circuit nodes, resulting in Single Event Multiple Upsets (SEMUs). In this work, we target SEMUs by presenting a design framework for soft-error-resilient sequential cell design with an overview of existing circuit and layout techniques for soft error mitigation, and introducing a new soft error resilience layout design principle called LEAP, or Layout Design through Error-Aware Transistor Positioning. We then discuss our application of LEAP to the SEU-immune Dual Interlocked Storage Cell (DICE) by implementing a new sequential element layout called LEAP-DICE, retaining the original DICE circuit topology. We compare the soft error performance of SEU-immune flip-flops with the LEAP-DICE flip-flop using a test chip in 180nm CMOS under 200-MeV proton radiation and conclude that 1) our LEAP-DICE flip-flop encounters on average 2,000X and 5X fewer errors compared to a conventional D flip-flop and our reference DICE flip-flop, respectively; 2) our LEAP-DICE flip-flop has the best soft error performance among all existing SEU-immune flip-flops; 3) In the evaluation of our design framework, we also discovered new soft error effects related to operating conditions such as voltage scaling, clock frequency setting and radiation dose.

Circuit and Layout Techniques for Soft error resilient Digital CMOS Circuits

Circuit and Layout Techniques for Soft error resilient Digital CMOS Circuits
Author: Hsiao-Heng Kelin Lee
Publsiher: Unknown
Total Pages: 135
Release: 2011
Genre: Electronic Book
ISBN: OCLC:747914799

Download Circuit and Layout Techniques for Soft error resilient Digital CMOS Circuits Book in PDF, Epub and Kindle

Radiation-induced soft errors are a major concern for modern digital circuits, especially memory elements. Unlike large Random Access Memories that can be protected using error-correcting codes and bit interleaving, soft error protection of sequential elements, i.e. latches and flip-flops, is challenging. Traditional techniques for designing soft-error-resilient sequential elements generally address single node errors, or Single Event Upsets (SEUs). However, with technology scaling, the charge deposited by a single particle strike can be simultaneously collected and shared by multiple circuit nodes, resulting in Single Event Multiple Upsets (SEMUs). In this work, we target SEMUs by presenting a design framework for soft-error-resilient sequential cell design with an overview of existing circuit and layout techniques for soft error mitigation, and introducing a new soft error resilience layout design principle called LEAP, or Layout Design through Error-Aware Transistor Positioning. We then discuss our application of LEAP to the SEU-immune Dual Interlocked Storage Cell (DICE) by implementing a new sequential element layout called LEAP-DICE, retaining the original DICE circuit topology. We compare the soft error performance of SEU-immune flip-flops with the LEAP-DICE flip-flop using a test chip in 180nm CMOS under 200-MeV proton radiation and conclude that 1) our LEAP-DICE flip-flop encounters on average 2,000X and 5X fewer errors compared to a conventional D flip-flop and our reference DICE flip-flop, respectively; 2) our LEAP-DICE flip-flop has the best soft error performance among all existing SEU-immune flip-flops; 3) In the evaluation of our design framework, we also discovered new soft error effects related to operating conditions such as voltage scaling, clock frequency setting and radiation dose.

Soft Error Reliability of VLSI Circuits

Soft Error Reliability of VLSI Circuits
Author: Behnam Ghavami,Mohsen Raji
Publsiher: Springer Nature
Total Pages: 114
Release: 2020-10-13
Genre: Technology & Engineering
ISBN: 9783030516109

Download Soft Error Reliability of VLSI Circuits Book in PDF, Epub and Kindle

This book is intended for readers who are interested in the design of robust and reliable electronic digital systems. The authors cover emerging trends in design of today’s reliable electronic systems which are applicable to safety-critical applications, such as automotive or healthcare electronic systems. The emphasis is on modeling approaches and algorithms for analysis and mitigation of soft errors in nano-scale CMOS digital circuits, using techniques that are the cornerstone of Computer Aided Design (CAD) of reliable VLSI circuits. The authors introduce software tools for analysis and mitigation of soft errors in electronic systems, which can be integrated easily with design flows. In addition to discussing soft error aware analysis techniques for combinational logic, the authors also describe new soft error mitigation strategies targeting commercial digital circuits. Coverage includes novel Soft Error Rate (SER) analysis techniques such as process variation aware SER estimation and GPU accelerated SER analysis techniques, in addition to SER reduction methods such as gate sizing and logic restructuring based SER techniques.

CMOS

CMOS
Author: R. Jacob Baker
Publsiher: John Wiley & Sons
Total Pages: 1074
Release: 2008
Genre: Technology & Engineering
ISBN: 9780470229415

Download CMOS Book in PDF, Epub and Kindle

This edition provides an important contemporary view of a wide range of analog/digital circuit blocks, the BSIM model, data converter architectures, and more. The authors develop design techniques for both long- and short-channel CMOS technologies and then compare the two.

Circuit Design for CMOS VLSI

Circuit Design for CMOS VLSI
Author: John P. Uyemura
Publsiher: Springer Science & Business Media
Total Pages: 461
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 9781461536208

Download Circuit Design for CMOS VLSI Book in PDF, Epub and Kindle

During the last decade, CMOS has become increasingly attractive as a basic integrated circuit technology due to its low power (at moderate frequencies), good scalability, and rail-to-rail operation. There are now a variety of CMOS circuit styles, some based on static complementary con ductance properties, but others borrowing from earlier NMOS techniques and the advantages of using clocking disciplines for precharge-evaluate se quencing. In this comprehensive book, the reader is led systematically through the entire range of CMOS circuit design. Starting with the in dividual MOSFET, basic circuit building blocks are described, leading to a broad view of both combinatorial and sequential circuits. Once these circuits are considered in the light of CMOS process technologies, impor tant topics in circuit performance are considered, including characteristics of interconnect, gate delay, device sizing, and I/O buffering. Basic circuits are then composed to form macro elements such as multipliers, where the reader acquires a unified view of architectural performance through par allelism, and circuit performance through careful attention to circuit-level and layout design optimization. Topics in analog circuit design reflect the growing tendency for both analog and digital circuit forms to be combined on the same chip, and a careful treatment of BiCMOS forms introduces the reader to the combination of both FET and bipolar technologies on the same chip to provide improved performance.

Integrated Circuit Design and Technology

Integrated Circuit Design and Technology
Author: M. J. Morant
Publsiher: Springer
Total Pages: 199
Release: 2013-12-01
Genre: Technology & Engineering
ISBN: 9781489971982

Download Integrated Circuit Design and Technology Book in PDF, Epub and Kindle

Analysis and Design of Resilient VLSI Circuits

Analysis and Design of Resilient VLSI Circuits
Author: Rajesh Garg
Publsiher: Springer Science & Business Media
Total Pages: 224
Release: 2009-10-22
Genre: Technology & Engineering
ISBN: 9781441909312

Download Analysis and Design of Resilient VLSI Circuits Book in PDF, Epub and Kindle

This monograph is motivated by the challenges faced in designing reliable VLSI systems in modern VLSI processes. The reliable operation of integrated circuits (ICs) has become increasingly dif?cult to achieve in the deep submicron (DSM) era. With continuouslydecreasing device feature sizes, combinedwith lower supply voltages and higher operating frequencies, the noise immunity of VLSI circuits is decreasing alarmingly. Thus, VLSI circuits are becoming more vulnerable to noise effects such as crosstalk, power supply variations, and radiation-inducedsoft errors. Among these noise sources, soft errors(or error caused by radiation particle strikes) have become an increasingly troublesome issue for memory arrays as well as c- binational logic circuits. Also, in the DSM era, process variations are increasing at a signi?cant rate, making it more dif?cult to design reliable VLSI circuits. Hence, it is important to ef?ciently design robust VLSI circuits that are resilient to radiation particle strikes and process variations. The work presented in this research mo- graph presents several analysis and design techniques with the goal of realizing VLSI circuits, which are radiation and process variation tolerant.

Extreme Environment Electronics

Extreme Environment Electronics
Author: John D. Cressler,H. Alan Mantooth
Publsiher: CRC Press
Total Pages: 1044
Release: 2017-12-19
Genre: Technology & Engineering
ISBN: 9781351832809

Download Extreme Environment Electronics Book in PDF, Epub and Kindle

Unfriendly to conventional electronic devices, circuits, and systems, extreme environments represent a serious challenge to designers and mission architects. The first truly comprehensive guide to this specialized field, Extreme Environment Electronics explains the essential aspects of designing and using devices, circuits, and electronic systems intended to operate in extreme environments, including across wide temperature ranges and in radiation-intense scenarios such as space. The Definitive Guide to Extreme Environment Electronics Featuring contributions by some of the world’s foremost experts in extreme environment electronics, the book provides in-depth information on a wide array of topics. It begins by describing the extreme conditions and then delves into a description of suitable semiconductor technologies and the modeling of devices within those technologies. It also discusses reliability issues and failure mechanisms that readers need to be aware of, as well as best practices for the design of these electronics. Continuing beyond just the "paper design" of building blocks, the book rounds out coverage of the design realization process with verification techniques and chapters on electronic packaging for extreme environments. The final set of chapters describes actual chip-level designs for applications in energy and space exploration. Requiring only a basic background in electronics, the book combines theoretical and practical aspects in each self-contained chapter. Appendices supply additional background material. With its broad coverage and depth, and the expertise of the contributing authors, this is an invaluable reference for engineers, scientists, and technical managers, as well as researchers and graduate students. A hands-on resource, it explores what is required to successfully operate electronics in the most demanding conditions.