Computational Methods for Fracture

Computational Methods for Fracture
Author: Timon Rabczuk
Publsiher: MDPI
Total Pages: 406
Release: 2019-10-28
Genre: Technology & Engineering
ISBN: 9783039216864

Download Computational Methods for Fracture Book in PDF, Epub and Kindle

This book offers a collection of 17 scientific papers about the computational modeling of fracture. Some of the manuscripts propose new computational methods and/or how to improve existing cutting edge methods for fracture. These contributions can be classified into two categories: 1. Methods which treat the crack as strong discontinuity such as peridynamics, scaled boundary elements or specific versions of the smoothed finite element methods applied to fracture and 2. Continuous approaches to fracture based on, for instance, phase field models or continuum damage mechanics. On the other hand, the book also offers a wide range of applications where state-of-the-art techniques are employed to solve challenging engineering problems such as fractures in rock, glass, concrete. Also, larger systems such as fracture in subway stations due to fire, arch dams, or concrete decks are studied.

Computational Methods for Fracture

Computational Methods for Fracture
Author: Timon Rabczuk
Publsiher: Unknown
Total Pages: 1
Release: 2019
Genre: Electronic books
ISBN: 3039216872

Download Computational Methods for Fracture Book in PDF, Epub and Kindle

This book offers a collection of 17 scientific papers about the computational modeling of fracture. Some of the manuscripts propose new computational methods and/or how to improve existing cutting edge methods for fracture. These contributions can be classified into two categories: 1. Methods which treat the crack as strong discontinuity such as peridynamics, scaled boundary elements or specific versions of the smoothed finite element methods applied to fracture and 2. Continuous approaches to fracture based on, for instance, phase field models or continuum damage mechanics. On the other hand, the book also offers a wide range of applications where state-of-the-art techniques are employed to solve challenging engineering problems such as fractures in rock, glass, concrete. Also, larger systems such as fracture in subway stations due to fire, arch dams, or concrete decks are studied.

Computational Methods in Fracture Mechanics

Computational Methods in Fracture Mechanics
Author: Ferri M.H.Aliabadi,A.P. Cisilino
Publsiher: Trans Tech Publications Ltd
Total Pages: 158
Release: 2010-12-06
Genre: Technology & Engineering
ISBN: 9783038134862

Download Computational Methods in Fracture Mechanics Book in PDF, Epub and Kindle

Volume is indexed by Thomson Reuters BCI (WoS). The existence of crack-like flaws cannot be precluded in any engineering structure. At the same time, the increasing demand for energy- and material-conservation dictates that structures be designed with smaller and smaller safety factors. Consequently, accurate quantitative estimates of the flaw-tolerance of structures are of direct concern to the prevention of fracture in load-bearing components of all kinds: ranging from space satellites and aircraft to bone prosthesis and home appliances.

Computational Methods in the Mechanics of Fracture

Computational Methods in the Mechanics of Fracture
Author: Satya N. Atluri
Publsiher: North Holland
Total Pages: 434
Release: 1986
Genre: Technology & Engineering
ISBN: STANFORD:36105030468289

Download Computational Methods in the Mechanics of Fracture Book in PDF, Epub and Kindle

This volume not only covers the fundamental concepts of fracture mechanics, but also the computational methodologies necessary for practical engineering designs aimed at fracture control. It gives a concise summary of various fracture theories: linear elastic, elastic-plastic, and dynamic fracture mechanics of metals and composites. Novel numerical methods (finite element and boundary element) that enable the treatment of complicated engineering problems are emphasized. Examined are problems of linear elastic fracture of metallic and non-metallic composite materials, three-dimensional problems of surface flaws, elastic-plastic fracture, stable crack growth, and dynamic crack propagation. A comprehensive outline of the energetic approach and energy integrals on fracture mechanics is also given. Contents: Preface. Parts: I. Chapters: 1. Fracture: Mechanics or Art? (F. Erdogan). II. 2. Linear Elastic Fracture Mechanics (A.S. Kobayashi). 3. Elastic-Plastic Fracture (Quasi-Static) (S.N. Atluri and A.S. Kobayashi). 4. Dynamic Crack Propagation in Solids (L.B. Freund). 5. Energetic Approaches and Path-Independent Integrals in Fracture Mechanics (S.N. Atluri). III. 6.

Computational Methods for Fracture in Porous Media

Computational Methods for Fracture in Porous Media
Author: René de Borst
Publsiher: Elsevier
Total Pages: 206
Release: 2017-10-30
Genre: Technology & Engineering
ISBN: 9780081009239

Download Computational Methods for Fracture in Porous Media Book in PDF, Epub and Kindle

Computational Methods for Fracture in Porous Media: Isogeometric and Extended Finite Element Methods provides a self-contained presentation of new modeling techniques for simulating crack propagation in fluid-saturated porous materials. This book reviews the basic equations that govern fluid-saturated porous media. A multi-scale approach to modeling fluid transport in joins, cracks, and faults is described in such a way that the resulting formulation allows for a sub-grid representation of the crack and fluid flow in the crack. Interface elements are also analyzed with their extension to the hydromechanical case. The flexibility of Extended Finite Element Method for non-stationary cracks is also explored and their formulation for fracture in porous media described. This book introduces Isogeometric finite element methods and its basic features and properties. The rapidly evolving phase-field approach to fracture is also discussed. The applications of this book’s content cover various fields of engineering, making it a valuable resource for researchers in soil, rock and biomechanics. Teaches both new and upcoming computational techniques for simulating fracture in (partially) fluid-saturated porous media Helps readers learn how to couple modern computational methods with non-linear fracture mechanics and flow in porous media Presents tactics on how to simulate fracture propagation in hydraulic fracturing

Boundary Element Analysis in Computational Fracture Mechanics

Boundary Element Analysis in Computational Fracture Mechanics
Author: T.A. Cruse
Publsiher: Springer Science & Business Media
Total Pages: 171
Release: 2012-12-06
Genre: Science
ISBN: 9789400913851

Download Boundary Element Analysis in Computational Fracture Mechanics Book in PDF, Epub and Kindle

The Boundary Integral Equation (BIE) method has occupied me to various degrees for the past twenty-two years. The attraction of BIE analysis has been its unique combination of mathematics and practical application. The EIE method is unforgiving in its requirement for mathe matical care and its requirement for diligence in creating effective numerical algorithms. The EIE method has the ability to provide critical inSight into the mathematics that underlie one of the most powerful and useful modeling approximations ever devised--elasticity. The method has even revealed important new insights into the nature of crack tip plastic strain distributions. I believe that EIE modeling of physical problems is one of the remaining opportunities for challenging and fruitful research by those willing to apply sound mathematical discipline coupled with phys ical insight and a desire to relate the two in new ways. The monograph that follows is the summation of many of the successes of that twenty-two years, supported by the ideas and synergisms that come from working with individuals who share a common interest in engineering mathematics and their application. The focus of the monograph is on the application of EIE modeling to one of the most important of the solid mechanics disciplines--fracture mechanics. The monograph is not a trea tise on fracture mechanics, as there are many others who are far more qualified than I to expound on that topic.

Computational Methods of Multi Physics Problems

Computational Methods of Multi Physics Problems
Author: Timon Rabczuk
Publsiher: MDPI
Total Pages: 128
Release: 2019-08-20
Genre: Technology & Engineering
ISBN: 9783039214174

Download Computational Methods of Multi Physics Problems Book in PDF, Epub and Kindle

This book offers a collection of six papers addressing problems associated with the computational modeling of multi-field problems. Some of the proposed contributions present novel computational techniques, while other topics focus on applying state-of-the-art techniques in order to solve coupled problems in various areas including the prediction of material failure during the lithiation process, which is of major importance in batteries; efficient models for flexoelectricity, which require higher-order continuity; the prediction of composite pipes under thermomechanical conditions; material failure in rock; and computational materials design. The latter exploits nano-scale modeling in order to predict various material properties for two-dimensional materials with applications in, for example, semiconductors. In summary, this book provides a good overview of the computational modeling of different multi-field problems.

Fracture Mechanics

Fracture Mechanics
Author: Alan T. Zehnder
Publsiher: Springer Science & Business Media
Total Pages: 226
Release: 2012-01-03
Genre: Science
ISBN: 9789400725959

Download Fracture Mechanics Book in PDF, Epub and Kindle

Fracture mechanics is a vast and growing field. This book develops the basic elements needed for both fracture research and engineering practice. The emphasis is on continuum mechanics models for energy flows and crack-tip stress- and deformation fields in elastic and elastic-plastic materials. In addition to a brief discussion of computational fracture methods, the text includes practical sections on fracture criteria, fracture toughness testing, and methods for measuring stress intensity factors and energy release rates. Class-tested at Cornell, this book is designed for students, researchers and practitioners interested in understanding and contributing to a diverse and vital field of knowledge.