Computational Multiscale Modeling of Fluids and Solids

Computational Multiscale Modeling of Fluids and Solids
Author: Martin Oliver Steinhauser
Publsiher: Springer
Total Pages: 405
Release: 2016-11-29
Genre: Science
ISBN: 9783662532249

Download Computational Multiscale Modeling of Fluids and Solids Book in PDF, Epub and Kindle

The idea of the book is to provide a comprehensive overview of computational physics methods and techniques, that are used for materials modeling on different length and time scales. Each chapter first provides an overview of the basic physical principles which are the basis for the numerical and mathematical modeling on the respective length-scale. The book includes the micro-scale, the meso-scale and the macro-scale, and the chapters follow this classification. The book explains in detail many tricks of the trade of some of the most important methods and techniques that are used to simulate materials on the perspective levels of spatial and temporal resolution. Case studies are included to further illustrate some methods or theoretical considerations. Example applications for all techniques are provided, some of which are from the author’s own contributions to some of the research areas. The second edition has been expanded by new sections in computational models on meso/macroscopic scales for ocean and atmosphere dynamics. Numerous applications in environmental physics and geophysics had been added.

Computational Multiscale Modeling of Fluids and Solids

Computational Multiscale Modeling of Fluids and Solids
Author: Martin Steinhauser
Publsiher: Springer
Total Pages: 428
Release: 2009-09-02
Genre: Science
ISBN: 3540844031

Download Computational Multiscale Modeling of Fluids and Solids Book in PDF, Epub and Kindle

Devastatingly simple, yet hugely effective, the concept of this timely text is to provide a comprehensive overview of computational physics methods and techniques used for materials modeling on different length and time scales. Each chapter first provides an overview of the physical basic principles which are the basis for the numerical and mathematical modeling on the respective length scale. The book includes the micro scale, the meso-scale and the macro scale.

Computational Multiscale Modeling of Fluids and Solids

Computational Multiscale Modeling of Fluids and Solids
Author: Martin Oliver Steinhauser
Publsiher: Springer Science & Business Media
Total Pages: 863
Release: 2008
Genre: Science
ISBN: 9783540751168

Download Computational Multiscale Modeling of Fluids and Solids Book in PDF, Epub and Kindle

The idea of the book is to provide a comprehensive overview of computational physics methods and techniques, that are used for materials modeling on different length and time scales. Each chapter first provides an overview of the physical basic principles which are the basis for the numerical and mathematical modeling on the respective length-scale. The book includes the micro-scale, the meso-scale and the macro-scale. The chapters follow this classification. The book will explain in detail many tricks of the trade of some of the most important methods and techniques that are used to simulate materials on the perspective levels of spatial and temporal resolution. Case studies are occasionally included to further illustrate some methods or theoretical considerations. Example applications for all techniques are provided, some of which are from the author’s own contributions to some of the research areas. Methods are explained, if possible, on the basis of the original publications but also references to standard text books established in the various fields are mentioned.

Computational Methods for Solids and Fluids

Computational Methods for Solids and Fluids
Author: Adnan Ibrahimbegovic
Publsiher: Springer
Total Pages: 493
Release: 2016-02-12
Genre: Technology & Engineering
ISBN: 9783319279961

Download Computational Methods for Solids and Fluids Book in PDF, Epub and Kindle

This volume contains the best papers presented at the 2nd ECCOMAS International Conference on Multiscale Computations for Solids and Fluids, held June 10-12, 2015. Topics dealt with include multiscale strategy for efficient development of scientific software for large-scale computations, coupled probability-nonlinear-mechanics problems and solution methods, and modern mathematical and computational setting for multi-phase flows and fluid-structure interaction. The papers consist of contributions by six experts who taught short courses prior to the conference, along with several selected articles from other participants dealing with complementary issues, covering both solid mechanics and applied mathematics.

Multiscale Modeling in Solid Mechanics

Multiscale Modeling in Solid Mechanics
Author: Ugo Galvanetto,M. H. Ferri Aliabadi
Publsiher: Imperial College Press
Total Pages: 349
Release: 2010
Genre: Science
ISBN: 9781848163089

Download Multiscale Modeling in Solid Mechanics Book in PDF, Epub and Kindle

This unique volume presents the state of the art in the field of multiscale modeling in solid mechanics, with particular emphasis on computational approaches. For the first time, contributions from both leading experts in the field and younger promising researchers are combined to give a comprehensive description of the recently proposed techniques and the engineering problems tackled using these techniques. The book begins with a detailed introduction to the theories on which different multiscale approaches are based, with regards to linear Homogenisation as well as various nonlinear approaches. It then presents advanced applications of multiscale approaches applied to nonlinear mechanical problems. Finally, the novel topic of materials with self-similar structure is discussed. Sample Chapter(s). Chapter 1: Computational Homogenisation for Non-Linear Heterogeneous Solids (808 KB). Contents: Computational Homogenisation for Non-Linear Heterogeneous Solids (V G Kouznetsova et al.); Two-Scale Asymptotic Homogenisation-Based Finite Element Analysis of Composite Materials (Q-Z Xiao & B L Karihaloo); Multi-Scale Boundary Element Modelling of Material Degradation and Fracture (G K Sfantos & M H Aliabadi); Non-Uniform Transformation Field Analysis: A Reduced Model for Multiscale Non-Linear Problems in Solid Mechanics (J-C Michel & P Suquet); Multiscale Approach for the Thermomechanical Analysis of Hierarchical Structures (M J Lefik et al.); Recent Advances in Masonry Modelling: Micro-Modelling and Homogenisation (P B Louren o); Mechanics of Materials with Self-Similar Hierarchical Microstructure (R C Picu & M A Soare). Readership: Researchers and academics in the field of heterogeneous materials and mechanical engineering; professionals in aeronautical engineering and materials science.

From Multiscale Modeling to Meso Science

From Multiscale Modeling to Meso Science
Author: Jinghai Li,Wei Ge,Wei Wang,Ning Yang,Xinhua Liu,Limin Wang,Xianfeng He,Xiaowei Wang,Junwu Wang,Mooson Kwauk
Publsiher: Springer Science & Business Media
Total Pages: 497
Release: 2013-03-22
Genre: Technology & Engineering
ISBN: 9783642351891

Download From Multiscale Modeling to Meso Science Book in PDF, Epub and Kindle

Multiscale modeling is becoming essential for accurate, rapid simulation in science and engineering. This book presents the results of three decades of research on multiscale modeling in process engineering from principles to application, and its generalization for different fields. This book considers the universality of meso-scale phenomena for the first time, and provides insight into the emerging discipline that unifies them, meso-science, as well as new perspectives for virtual process engineering. Multiscale modeling is applied in areas including: multiphase flow and fluid dynamics chemical, biochemical and process engineering mineral processing and metallurgical engineering energy and resources materials science and engineering Jinghai Li is Vice-President of the Chinese Academy of Sciences (CAS), a professor at the Institute of Process Engineering, CAS, and leader of the EMMS (Energy-minimizing multiscale) Group. Wei Ge, Wei Wang, Ning Yang and Junwu Wang are professors at the EMMS Group, part of the Institute of Process Engineering, CAS. Xinhua Liu, Limin Wang, Xianfeng He and Xiaowei Wang are associate professors at the EMMS Group, part of the Institute of Process Engineering, CAS. Mooson Kwauk is an emeritus director of the Institute of Process Engineering, CAS, and is an advisor to the EMMS Group.

Computational Multiscale Modeling of Multiphase Nanosystems

Computational Multiscale Modeling of Multiphase Nanosystems
Author: Alexander V. Vakhrushev
Publsiher: CRC Press
Total Pages: 403
Release: 2017-10-10
Genre: Science
ISBN: 9781771885294

Download Computational Multiscale Modeling of Multiphase Nanosystems Book in PDF, Epub and Kindle

Computational Multiscale Modeling of Multiphase Nanosystems: Theory and Applications presents a systematic description of the theory of multiscale modeling of nanotechnology applications in various fields of science and technology. The problems of computing nanoscale systems at different structural scales are defined, and algorithms are given for their numerical solutions by the quantum/continuum mechanics, molecular dynamics, and mesodynamics methods. Emphasis is given to the processes of the formation, movement, and interaction of nanoparticles; the formation of nanocomposites; and the processes accompanying the application of nanocomposites. The book concentrates on different types of nanosystems: solid, liquid, gaseous, and multi-phase, consisting of various elements interacting with each other, and with other elements of the nanosystem and with the environment. The book includes a large number of examples of numerical modeling of nanosystems. The valuable information presented here will be useful to engineers, researchers, and postgraduate students engaged in the design and research in the field of nanotechnology.

Modeling in Engineering Using Innovative Numerical Methods for Solids and Fluids

Modeling in Engineering Using Innovative Numerical Methods for Solids and Fluids
Author: Laura De Lorenzis,Alexander Düster
Publsiher: Springer Nature
Total Pages: 225
Release: 2020-02-08
Genre: Science
ISBN: 9783030375188

Download Modeling in Engineering Using Innovative Numerical Methods for Solids and Fluids Book in PDF, Epub and Kindle

The book examines innovative numerical methods for computational solid and fluid mechanics that can be used to model complex problems in engineering. It also presents innovative and promising simulation methods, including the fundamentals of these methods, as well as advanced topics and complex applications. Further, the book explores how numerical simulations can significantly reduce the number of time-consuming and expensive experiments required, and can support engineering decisions by providing data that would be very difficult, if not impossible, to obtain experimentally. It also includes chapters covering topics such as particle methods addressing particle-based materials and numerical methods that are based on discrete element formulations; fictitious domain methods; phase field models; computational fluid dynamics based on modern finite volume schemes; hybridizable discontinuous Galerkin methods; and non-intrusive coupling methods for structural models.