Conformal Prediction for Reliable Machine Learning

Conformal Prediction for Reliable Machine Learning
Author: Vineeth Balasubramanian,Shen-Shyang Ho,Vladimir Vovk
Publsiher: Newnes
Total Pages: 334
Release: 2014-04-23
Genre: Computers
ISBN: 9780124017153

Download Conformal Prediction for Reliable Machine Learning Book in PDF, Epub and Kindle

The conformal predictions framework is a recent development in machine learning that can associate a reliable measure of confidence with a prediction in any real-world pattern recognition application, including risk-sensitive applications such as medical diagnosis, face recognition, and financial risk prediction. Conformal Predictions for Reliable Machine Learning: Theory, Adaptations and Applications captures the basic theory of the framework, demonstrates how to apply it to real-world problems, and presents several adaptations, including active learning, change detection, and anomaly detection. As practitioners and researchers around the world apply and adapt the framework, this edited volume brings together these bodies of work, providing a springboard for further research as well as a handbook for application in real-world problems. Understand the theoretical foundations of this important framework that can provide a reliable measure of confidence with predictions in machine learning Be able to apply this framework to real-world problems in different machine learning settings, including classification, regression, and clustering Learn effective ways of adapting the framework to newer problem settings, such as active learning, model selection, or change detection

Algorithmic Learning in a Random World

Algorithmic Learning in a Random World
Author: Vladimir Vovk,Alexander Gammerman,Glenn Shafer
Publsiher: Springer Science & Business Media
Total Pages: 344
Release: 2005-03-22
Genre: Computers
ISBN: 0387001522

Download Algorithmic Learning in a Random World Book in PDF, Epub and Kindle

Algorithmic Learning in a Random World describes recent theoretical and experimental developments in building computable approximations to Kolmogorov's algorithmic notion of randomness. Based on these approximations, a new set of machine learning algorithms have been developed that can be used to make predictions and to estimate their confidence and credibility in high-dimensional spaces under the usual assumption that the data are independent and identically distributed (assumption of randomness). Another aim of this unique monograph is to outline some limits of predictions: The approach based on algorithmic theory of randomness allows for the proof of impossibility of prediction in certain situations. The book describes how several important machine learning problems, such as density estimation in high-dimensional spaces, cannot be solved if the only assumption is randomness.

Conformal and Probabilistic Prediction with Applications

Conformal and Probabilistic Prediction with Applications
Author: Alexander Gammerman,Zhiyuan Luo,Jesús Vega,Vladimir Vovk
Publsiher: Springer
Total Pages: 229
Release: 2016-04-16
Genre: Computers
ISBN: 9783319333953

Download Conformal and Probabilistic Prediction with Applications Book in PDF, Epub and Kindle

This book constitutes the refereed proceedings of the 5th International Symposium on Conformal and Probabilistic Prediction with Applications, COPA 2016, held in Madrid, Spain, in April 2016. The 14 revised full papers presented together with 1 invited paper were carefully reviewed and selected from 23 submissions and cover topics on theory of conformal prediction; applications of conformal prediction; and machine learning.

Interpretable Machine Learning

Interpretable Machine Learning
Author: Christoph Molnar
Publsiher: Lulu.com
Total Pages: 320
Release: 2020
Genre: Artificial intelligence
ISBN: 9780244768522

Download Interpretable Machine Learning Book in PDF, Epub and Kindle

This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.

Statistical Learning and Data Sciences

Statistical Learning and Data Sciences
Author: Alexander Gammerman,Vladimir Vovk,Harris Papadopoulos
Publsiher: Springer
Total Pages: 444
Release: 2015-04-02
Genre: Computers
ISBN: 9783319170916

Download Statistical Learning and Data Sciences Book in PDF, Epub and Kindle

This book constitutes the refereed proceedings of the Third International Symposium on Statistical Learning and Data Sciences, SLDS 2015, held in Egham, Surrey, UK, April 2015. The 36 revised full papers presented together with 2 invited papers were carefully reviewed and selected from 59 submissions. The papers are organized in topical sections on statistical learning and its applications, conformal prediction and its applications, new frontiers in data analysis for nuclear fusion, and geometric data analysis.

Artificial Intelligence Applications and Innovations

Artificial Intelligence Applications and Innovations
Author: Lazaros Iliadis,Ilias Maglogiannis,Harris Papadopoulos,Spyros Sioutas,Christos Makris
Publsiher: Springer
Total Pages: 352
Release: 2014-09-15
Genre: Computers
ISBN: 9783662447222

Download Artificial Intelligence Applications and Innovations Book in PDF, Epub and Kindle

This book constitutes the refereed proceedings of four AIAI 2014 workshops, co-located with the 10th IFIP WG 12.5 International Conference on Artificial Intelligence Applications and Innovations, AIAI 2014, held in Rhodes, Greece, in September 2014: the Third Workshop on Intelligent Innovative Ways for Video-to-Video Communications in Modern Smart Cities, IIVC 2014; the Third Workshop on Mining Humanistic Data, MHDW 2014; the Third Workshop on Conformal Prediction and Its Applications, CoPA 2014; and the First Workshop on New Methods and Tools for Big Data, MT4BD 2014. The 36 revised full papers presented were carefully reviewed and selected from numerous submissions. They cover a large range of topics in basic AI research approaches and applications in real world scenarios.

Advances and Trends in Artificial Intelligence From Theory to Practice

Advances and Trends in Artificial Intelligence  From Theory to Practice
Author: Franz Wotawa,Gerhard Friedrich,Ingo Pill,Roxane Koitz-Hristov,Moonis Ali
Publsiher: Springer
Total Pages: 868
Release: 2019-06-28
Genre: Computers
ISBN: 9783030229993

Download Advances and Trends in Artificial Intelligence From Theory to Practice Book in PDF, Epub and Kindle

This book constitutes the thoroughly refereed proceedings of the 32nd International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2019, held in Graz, Austria, in July 2019. The 41 full papers and 32 short papers presented were carefully reviewed and selected from 151 submissions. The IEA/AIE 2019 conference will continue the tradition of emphasizing on applications of applied intelligent systems to solve real-life problems in all areas. These areas include engineering, science, industry, automation and robotics, business and finance, medicine and biomedicine, bioinformatics, cyberspace, and human-machine interactions. IEA/AIE 2019 will have a special focus on automated driving and autonomous systems and also contributions dealing with such systems or their verification and validation as well.

Handbook of Research on Disease Prediction Through Data Analytics and Machine Learning

Handbook of Research on Disease Prediction Through Data Analytics and Machine Learning
Author: Rani, Geeta,Tiwari, Pradeep Kumar
Publsiher: IGI Global
Total Pages: 586
Release: 2020-10-16
Genre: Medical
ISBN: 9781799827436

Download Handbook of Research on Disease Prediction Through Data Analytics and Machine Learning Book in PDF, Epub and Kindle

By applying data analytics techniques and machine learning algorithms to predict disease, medical practitioners can more accurately diagnose and treat patients. However, researchers face problems in identifying suitable algorithms for pre-processing, transformations, and the integration of clinical data in a single module, as well as seeking different ways to build and evaluate models. The Handbook of Research on Disease Prediction Through Data Analytics and Machine Learning is a pivotal reference source that explores the application of algorithms to making disease predictions through the identification of symptoms and information retrieval from images such as MRIs, ECGs, EEGs, etc. Highlighting a wide range of topics including clinical decision support systems, biomedical image analysis, and prediction models, this book is ideally designed for clinicians, physicians, programmers, computer engineers, IT specialists, data analysts, hospital administrators, researchers, academicians, and graduate and post-graduate students.