Converter Based Dynamics and Control of Modern Power Systems

Converter Based Dynamics and Control of Modern Power Systems
Author: Antonello Monti,Federico Milano,Ettore Bompard,Xavier Guillaud
Publsiher: Academic Press
Total Pages: 376
Release: 2020-10-22
Genre: Technology & Engineering
ISBN: 9780128184929

Download Converter Based Dynamics and Control of Modern Power Systems Book in PDF, Epub and Kindle

Converter-Based Dynamics and Control of Modern Power Systems addresses the ongoing changes and challenges in rotating masses of synchronous generators, which are transforming dynamics of the electrical system. These changes make it more important to consider and understand the role of power electronic systems and their characteristics in shaping the subtleties of the grid and this book fills that knowledge gap. Balancing theory, discussion, diagrams, mathematics, and data, this reference provides the information needed to acquire a thorough overview of resilience issues and frequency definition and estimation in modern power systems. This book offers an overview of classical power system dynamics and identifies ways of establishing future challenges and how they can be considered at a global level to overcome potential problems. The book is designed to prepare future engineers for operating a system that will be driven by electronics and less by electromechanical systems. Includes theory on the emerging topic of electrical grids based on power electronics Creates a good bridge between traditional theory and modern theory to support researchers and engineers Links the two fields of power systems and power electronics in electrical engineering

Modern Power Systems Control and Operation

Modern Power Systems Control and Operation
Author: Atif S. Debs
Publsiher: Springer Science & Business Media
Total Pages: 376
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 9781461310730

Download Modern Power Systems Control and Operation Book in PDF, Epub and Kindle

Initial material for this book was developed over a period of several years through the introduction in the mid-seventies of a graduate-level course en titled, "Control and Operation of Interconnected Power Systems," at the Georgia Institute of Technology. Subsequent involvement with the utility industry and in teaching continuing education courses on modern power sys tem control and operation contributed to the complimentary treatment of the dynamic aspects of this overall topic. In effect, we have evolved a textbook that provides a thorough under standing of fudamentals as needed by a graduate student with a prior back ground in power systems analysis at the undergraduate level, and in system theory concepts normally provided at the beginning of the graduate level in electrical engineering. It is also designed to provide the depth needed both by the serious graduate student and the power industry engineer involved in the activities of energy control centers and short-term operations planning. As explained in Chapter 2, the entire book can be covered in a two quarter course sequence. The bulk of the material may be covered in one semester. For a two-semester offering, we recommend that students be in volved in some project work to further their depth of understanding. Utility and consulting industry engineers should concentrate on the more advanced concepts and developments usually available at the latter half of each chap ter.

Dynamics and Control of Switched Electronic Systems

Dynamics and Control of Switched Electronic Systems
Author: Francesco Vasca,Luigi Iannelli
Publsiher: Springer Science & Business Media
Total Pages: 494
Release: 2012-03-28
Genre: Technology & Engineering
ISBN: 9781447128854

Download Dynamics and Control of Switched Electronic Systems Book in PDF, Epub and Kindle

The increased efficiency and quality constraints imposed on electrical energy systems have inspired a renewed research interest in the study of formal approaches to the analysis and control of power electronics converters. Switched systems represent a useful framework for modeling these converters and the peculiarities of their operating conditions and control goals justify the specific classification of “switched electronic systems”. Indeed, idealized switched models of power converters introduce problems not commonly encountered when analyzing generic switched models or non-switched electrical networks. In that sense the analysis of switched electronic systems represents a source for new ideas and benchmarks for switched and hybrid systems generally. Dynamics and Control of Switched Electronic Systems draws on the expertise of an international group of expert contributors to give an overview of recent advances in the modeling, simulation and control of switched electronic systems. The reader is provided with a well-organized source of references and a mathematically-based report of the state of the art in analysis and design techniques for switched power converters. Intuitive language, realistic illustrative examples and numerical simulations help the reader to come to grips with the rigorous presentation of many promising directions of research such as: converter topologies and modulation techniques; continuous-time, discrete-time and hybrid models; modern control strategies for power converters; and challenges in numerical simulation. The guidance and information imparted in this text will be appreciated by engineers, and applied mathematicians working on system and circuit theory, control systems development, and electronic and energy conversion systems design.

Grid Connected Converters

Grid Connected Converters
Author: Hassan Bevrani,Toshiji Kato,Toshifumi Ise,Kaoru Inoue
Publsiher: Elsevier
Total Pages: 312
Release: 2022-08-11
Genre: Technology & Engineering
ISBN: 9780323999540

Download Grid Connected Converters Book in PDF, Epub and Kindle

Grid Connected Converters: Modeling, Stability and Control discusses the foundations and core applications of this diverse field, from structure, modeling and dynamic equivalencing through power and microgrids dynamics and stability, before moving on to controller synthesis methodologies for a powerful range of applications. The work opens with physical constraints and engineering aspects of advanced control schemes. Robust and adaptive control strategies are evaluated using real-time simulation and experimental studies. Once foundations have been established, the work goes on to address new technical challenges such as virtual synchronous generators and synergic inertia emulation in response to low inertia challenges in modern power grids.The book also addresses advanced systematic control synthesis methodologies to enhance system stability and dynamic performance in the presence of uncertainties, practical constraints and cyberattacks. Addresses new approaches for modeling, stability analysis and control design of GCCs Proposes robust and flexible GCC control frameworks for supporting grid regulation Emphasizes the application of GCCs in inertia emulation, oscillation damping control, and dynamic shaping Addresses systematic control synthesis methodologies for system security and dynamic performance

Power Electronic Converters Modeling and Control

Power Electronic Converters Modeling and Control
Author: Seddik Bacha,Iulian Munteanu,Antoneta Iuliana Bratcu
Publsiher: Springer Science & Business Media
Total Pages: 454
Release: 2013-11-12
Genre: Technology & Engineering
ISBN: 9781447154785

Download Power Electronic Converters Modeling and Control Book in PDF, Epub and Kindle

Modern power electronic converters are involved in a very broad spectrum of applications: switched-mode power supplies, electrical-machine-motion-control, active power filters, distributed power generation, flexible AC transmission systems, renewable energy conversion systems and vehicular technology, among them. Power Electronics Converters Modeling and Control teaches the reader how to analyze and model the behavior of converters and so to improve their design and control. Dealing with a set of confirmed algorithms specifically developed for use with power converters, this text is in two parts: models and control methods. The first is a detailed exposition of the most usual power converter models: · switched and averaged models; · small/large-signal models; and · time/frequency models. The second focuses on three groups of control methods: · linear control approaches normally associated with power converters; · resonant controllers because of their significance in grid-connected applications; and · nonlinear control methods including feedback linearization, stabilizing, passivity-based, and variable-structure control. Extensive case-study illustration and end-of-chapter exercises reinforce the study material. Power Electronics Converters Modeling and Control addresses the needs of graduate students interested in power electronics, providing a balanced understanding of theoretical ideas coupled with pragmatic tools based on control engineering practice in the field. Academics teaching power electronics will find this an attractive course text and the practical points make the book useful for self tuition by engineers and other practitioners wishing to bring their knowledge up to date.

The Impact of Automatic Control Research on Industrial Innovation

The Impact of Automatic Control Research on Industrial Innovation
Author: Silvia Mastellone,Alex van Delft
Publsiher: John Wiley & Sons
Total Pages: 260
Release: 2024-01-04
Genre: Science
ISBN: 9781119983613

Download The Impact of Automatic Control Research on Industrial Innovation Book in PDF, Epub and Kindle

The Impact of Automatic Control Research on Industrial Innovation Bring together the theory and practice of control research with this innovative overview Automatic control research focuses on subjects pertaining to the theory and practice of automation science and technology subjects such as industrial automation, robotics, and human???machine interaction. With each passing year, these subjects become more relevant to researchers, policymakers, industrialists, and workers alike. The work of academic control researchers, however, is often distant from the perspectives of industry practitioners, creating the potential for insights to be lost on both sides. The Impact of Automatic Control Research on Industrial Innovation seeks to close this distance, providing an industrial perspective on the future of control research. It seeks to outline the possible and ongoing impacts of automatic control technologies across a range of industries, enabling readers to understand the connection between theory and practice. The result is a book that combines scholarly and practical understandings of industrial innovations and their possible role in building a sustainable world. The Impact of Automatic Control Research on Industrial Innovation readers will also find: Insights on industrial and commercial applications of automatic control theory. Detailed discussion of industrial sectors including power, automotive, production processes, and more. An applied research roadmap for each sector. This book is a must-own for both control researchers and control engineers, in both theoretical and applied contexts, as well as for graduate or continuing education courses on control theory and practice.

Power System Modeling Computation and Control

Power System Modeling  Computation  and Control
Author: Joe H. Chow,Juan J. Sanchez-Gasca
Publsiher: John Wiley & Sons
Total Pages: 664
Release: 2020-01-21
Genre: Technology & Engineering
ISBN: 9781119546870

Download Power System Modeling Computation and Control Book in PDF, Epub and Kindle

Provides students with an understanding of the modeling and practice in power system stability analysis and control design, as well as the computational tools used by commercial vendors Bringing together wind, FACTS, HVDC, and several other modern elements, this book gives readers everything they need to know about power systems. It makes learning complex power system concepts, models, and dynamics simpler and more efficient while providing modern viewpoints of power system analysis. Power System Modeling, Computation, and Control provides students with a new and detailed analysis of voltage stability; a simple example illustrating the BCU method of transient stability analysis; and one of only a few derivations of the transient synchronous machine model. It offers a discussion on reactive power consumption of induction motors during start-up to illustrate the low-voltage phenomenon observed in urban load centers. Damping controller designs using power system stabilizer, HVDC systems, static var compensator, and thyristor-controlled series compensation are also examined. In addition, there are chapters covering flexible AC transmission Systems (FACTS)—including both thyristor and voltage-sourced converter technology—and wind turbine generation and modeling. Simplifies the learning of complex power system concepts, models, and dynamics Provides chapters on power flow solution, voltage stability, simulation methods, transient stability, small signal stability, synchronous machine models (steady-state and dynamic models), excitation systems, and power system stabilizer design Includes advanced analysis of voltage stability, voltage recovery during motor starts, FACTS and their operation, damping control design using various control equipment, wind turbine models, and control Contains numerous examples, tables, figures of block diagrams, MATLAB plots, and problems involving real systems Written by experienced educators whose previous books and papers are used extensively by the international scientific community Power System Modeling, Computation, and Control is an ideal textbook for graduate students of the subject, as well as for power system engineers and control design professionals.

Oscillatory Stability of Converter Dominated Power Systems

Oscillatory Stability of Converter Dominated Power Systems
Author: Xiaorong Xie
Publsiher: Springer Nature
Total Pages: 251
Release: 2024
Genre: Electronic Book
ISBN: 9783031533570

Download Oscillatory Stability of Converter Dominated Power Systems Book in PDF, Epub and Kindle