Counter Electrodes for Dye Sensitized and Perovskite Solar Cells 2 Vols

Counter Electrodes for Dye Sensitized and Perovskite Solar Cells  2 Vols
Author: Sining Yun,Anders Hagfeldt
Publsiher: John Wiley & Sons
Total Pages: 658
Release: 2019-01-04
Genre: Science
ISBN: 9783527413676

Download Counter Electrodes for Dye Sensitized and Perovskite Solar Cells 2 Vols Book in PDF, Epub and Kindle

A guide to one of the most important aspects for affordable and highly efficient dye-sensitized solar cells Dye-sensitized solar cells have the potential to be one of the most promising photovoltaic technologies for production of renewable and clean energy. Counter Electrodes for Dye-Sensitized and Perovskite Solar Cells offers an introduction to the various types of counter electrode catalysts for dye-sensitized solar cells and perovskite solar cells, including metal and metal compounds, carbon materials, polymers, and composites. With contributions from an international panel of experts, the book contains a discussion of the design and synthesis of the catalysts, characterization and stability of the devices, as well as calculations on properties. The contributors cover a wide range of topics including information on: carbon nanotubes electrocatalysts for I-mediated dye-sensitized solar cells; Pt-loaded composite electrocatalysts for I-mediated dye-sensitized solar cells; metal contact electrodes for perovskite solar cells; and much more. The book also includes insight into the future developments in the field. This important resource Covers the various types of counter electrode catalysts and presents design strategies, synthesis methods, theoretical calculation and stability evaluation Includes information on low-cost counter electrode catalysts and commercial applications of dye-sensitized sensitized solar cells Disscuses how electrode catalysts can be applied in a range of fields, such as solar cells, fuel cells, hydrogen production, and photocatalysis Offers contributions from leading experts in the field including Anders Hagfeldt, one of the world's leading researchers in this field Written for materials scientists, solid state chemists, electrochemists, catalytic chemists, solid state physicists, and chemical industry professionals, Counter Electrodes for Dye-Sensitized and Perovskite Solar Cells is a comprehensive and authoritative guide to dye-sensitized solar cells.

Counter Electrodes for Dye sensitized and Perovskite Solar Cells

Counter Electrodes for Dye sensitized and Perovskite Solar Cells
Author: Sining Yun,Anders Hagfeldt
Publsiher: Wiley-VCH
Total Pages: 500
Release: 2018-10-01
Genre: Science
ISBN: 3527813616

Download Counter Electrodes for Dye sensitized and Perovskite Solar Cells Book in PDF, Epub and Kindle

A guide to one of the most important aspects for affordable and highly efficient dye-sensitized solar cells Dye-sensitized solar cells have the potential to be one of the most promising photovoltaic technologies for production of renewable and clean energy. Counter Electrodes for Dye-Sensitized and Perovskite Solar Cells offers an introduction to the various types of counter electrode catalysts for dye-sensitized solar cells and perovskite solar cells, including metal and metal compounds, carbon materials, polymers, and composites. With contributions from an international panel of experts, the book contains a discussion of the design and synthesis of the catalysts, characterization and stability of the devices, as well as calculations on properties. The contributors cover a wide range of topics including information on: carbon nanotubes electrocatalysts for I-mediated dye-sensitized solar cells; Pt-loaded composite electrocatalysts for I-mediated dye-sensitized solar cells; metal contact electrodes for perovskite solar cells; and much more. The book also includes insight into the future developments in the field. This important resource Covers the various types of counter electrode catalysts and presents design strategies, synthesis methods, theoretical calculation and stability evaluation Includes information on low-cost counter electrode catalysts and commercial applications of dye-sensitized sensitized solar cells Disscuses how electrode catalysts can be applied in a range of fields, such as solar cells, fuel cells, hydrogen production, and photocatalysis Offers contributions from leading experts in the field including Anders Hagfeldt, one of the world's leading researchers in this field Written for materials scientists, solid state chemists, electrochemists, catalytic chemists, solid state physicists, and chemical industry professionals, Counter Electrodes for Dye-Sensitized and Perovskite Solar Cells is a comprehensive and authoritative guide to dye-sensitized solar cells.

Counter Electrode for Dye Sensitized Solar Cells

Counter Electrode for Dye   Sensitized Solar Cells
Author: Alagarsamy Pandikumar,Kandasamy Jothivnekatachalam
Publsiher: CRC Press
Total Pages: 279
Release: 2021-06-24
Genre: Science
ISBN: 9781000225112

Download Counter Electrode for Dye Sensitized Solar Cells Book in PDF, Epub and Kindle

Renewable energies have become an attractive option to overcome the energy demands in sustainable and affordable ways. It has been estimated that one-third of the total renewable energies would be generated from photovoltaics (PVs). A solar or PV cell is a device that directly converts sunlight into electricity by taking benefit of the photoelectric effect. In the third-generation solar PVs, dye-sensitized solar cells (DSSCs) are believed to be the most promising and have attracted wide attention. The optimization of a DSSC is focused on four main components: (i) metal oxide semiconductor, (ii) photosensitizer, (iii) redox couple electrolyte, and (iv) counter electrode. Among these, the counter electrode undertakes three functions: (i) as a catalyst, (ii) as a positive electrode of primary cells, and (iii) as a mirror. To obey these functions, the electrode material should have high catalytic activity, high conductivity, high reflectivity, high surface area, and electrochemical and mechanical stability. To improve the performance of DSSCs, many scientists have developed new counter electrodes made of platinum, carbon materials, transition metals, conductive polymers, and composites. This book converses the various aspects of materials for the fabrication of counter electrodes especially for the DSSCs.

Dye sensitized Solar Cells

Dye sensitized Solar Cells
Author: K. Kalyanasundaram
Publsiher: EPFL Press
Total Pages: 632
Release: 2010-08-03
Genre: Technology & Engineering
ISBN: 143980866X

Download Dye sensitized Solar Cells Book in PDF, Epub and Kindle

The dye-sensitized solar cell (DSC) is a photovoltaic converter that mimics natural photosynthesis. Like green plants and algae it uses a molecular absorber, the dye, to harvest sunlight and generate electric charges. Dye-sensitized solar cells are poised to replace existing technologies in «low density» solar-energy applications, especially in contexts where mechanical robustness and light weight is required. This book offers the first comprehensive look at this promising technology and aims to provide a graduate level text that brings together the fundamentals of DSC from three perspectives (materials, performance, and mechanistic aspects), as well as to serve as an advanced monograph that summarizes the key advances and lists the technical challenges remaining to be solved.

Smart Materials for Science and Engineering

Smart Materials for Science and Engineering
Author: Upendra Kumar,Piyush Kumar Sonkar
Publsiher: John Wiley & Sons
Total Pages: 405
Release: 2024-05-07
Genre: Technology & Engineering
ISBN: 9781394186464

Download Smart Materials for Science and Engineering Book in PDF, Epub and Kindle

SMART MATERIALS FOR SCIENCE AND ENGINEERING Smart materials, also known as advanced or creative materials, are described as advanced materials that react intuitively to environmental changes or as materials that can return to their original shape in response to certain stimuli. Smart materials are classified as either active or passive based on their characteristics. There are two types of active materials. The first kind cannot change its characteristics when subjected to outside stimuli, for example photochromatic spectacles that only alter their color when exposed to sunlight. The other, which includes piezoelectric materials, can change one sort of energy (thermal, electrical, chemical, mechanical, or optical) into another. When subjected to external pressure, it can generate an electric charge. As an example, optical fibers can transmit electromagnetic waves. In contrast, passive smart materials can transmit a specific sort of energy. They have some amazing qualities that set them apart from other materials, such as transiency, meaning they can react to different kinds of external stimuli immediately, self-actuation or the capacity to change their appearance and shape, selectivity where the response is divided and expected, directness when the response is limited to the activating event, shape-changing where the material can change its shape to external stimuli, their ability to determine their own health, also known as self-diagnosis, and their ability to self-heal. The ability to synthesize novel materials has substantially progressed thanks to science and technology over the past 20 years. They fall mostly into the following four categories: polymers, ceramics, metals, and smart materials. Among these, smart materials are gaining popularity since they have more uses than conventional materials. Smart materials are unusual substances that have the ability to alter their properties, such as those that can immediately change their phase when placed near a magnet or their shape simply by applying heat. Humanity will be significantly impacted by this new era of smart materials. For instance, some of them can adapt their properties to the environment, some have sensory capabilities, some can repair themselves automatically, and some can degrade themselves. These extraordinary properties of smart materials will have an effect on all facets of civilization. There are many different types of intelligent materials, including magnetorheological materials, electro-rheostat materials, shape memory alloys, piezoelectric materials, and more. This book describes many forms of smart materials and their possible uses in various fields. A literature survey discusses the different types of smart materials, such as based ceramics, polymers, and organic compounds and their needs, advantages, disadvantages, and applications will be comprehensively discussed. A discussion of well-established smart materials including piezoelectric, magnetostrictive, shape memory alloy, electro-rheological fluid, and magnetorheological fluid materials will be discussed with their present prospects.

Atomic and Nano Scale Materials for Advanced Energy Conversion 2 Volumes

Atomic and Nano Scale Materials for Advanced Energy Conversion  2 Volumes
Author: Zongyou Yin
Publsiher: John Wiley & Sons
Total Pages: 887
Release: 2022-04-18
Genre: Technology & Engineering
ISBN: 9783527348923

Download Atomic and Nano Scale Materials for Advanced Energy Conversion 2 Volumes Book in PDF, Epub and Kindle

Atomic and Nano Scale Materials for Advanced Energy Conversion Discover the latest advancements in energy conversion technologies used to develop modern sustainable energy techniques In Atomic and Nano Scale Materials for Advanced Energy Conversion, expert interdisciplinary researcher Dr. Zongyou Yin delivers a comprehensive overview of nano-to-atomic scale materials science, the development of advanced electrochemical, photochemical, photoelectrochemical, and photovoltaic energy conversion strategies, and the applications for sustainable water splitting and other technologies. The book offers readers cutting-edge information of two-dimensional nano, mixed-dimensional nano, nano rare earth, clusters, and single atoms. It constructively evaluates emerging nano-to-atomic scale energy conversion technologies for academic research and development (R&D) researchers and industrial technique consultants and engineers. The author sets out a systematic analysis of recent energy-conversion science, covering topics like adaptable manufacturing of Van der Waals heterojunctions, mixed-dimensional junctions, tandem structures, and superlattices. He also discusses function-oriented engineering in polymorphic phases, photon absorption, excitons-charges conversion, non-noble plasmonics, and solid-liquid-gas interactions. Readers will also benefit from: A thorough introduction to emerging nanomaterials for energy conversion, including electrochemical, photochemical, photoelectrochemical, and photovoltaic energy conversion An exploration of clusters for energy conversion, including electrochemical, photochemical, and photoelectrochemical clusters Practical discussions of single atoms for energy conversion in electrochemical, photochemical, and photoelectrochemical energy conversion technologies A thorough analysis of future perspectives and directions in advanced energy conversion technology Perfect for materials scientists, photochemists, electrochemists, and inorganic chemists, Atomic and Nano Scale Materials for Advanced Energy Conversion is also a must-read resource for catalytic chemists interested in the intersection of advanced chemistry and physics in energy conversion technologies.

Handbook of Fibrous Materials 2 Volumes

Handbook of Fibrous Materials  2 Volumes
Author: Jinlian Hu,Bipin Kumar,Jing Lu
Publsiher: John Wiley & Sons
Total Pages: 1316
Release: 2020-03-31
Genre: Technology & Engineering
ISBN: 9783527342594

Download Handbook of Fibrous Materials 2 Volumes Book in PDF, Epub and Kindle

Dieses Handbuch erörtert den aktuellen Stand der Technik bei Faserstoffen und bietet einen breiten Überblick über deren Einsatz in Forschung und Entwicklung. Herausgeber ist ein führender Experte des Fachgebiets. Abhandlungen stammen von erfahrenen Forschern im Bereich Fasern und Textilien. Band 1 legt den Schwerpunkt auf Faserklassen, die Herstellung und Charakterisierung von Fasern. Band 2 stellt Anwendungen vor, darunter auch neue Anwendungen aus den Bereichen Energie, Umweltwissenschaften und Gesundheitswesen. Ein hochaktuelles Fachbuch und einzigartiges Wissenskompendium für Hochschule und Industrie.

Materials for Solar Cell Technologies II

Materials for Solar Cell Technologies II
Author: Inamuddin,Tauseef Ahmad Rangreez,Mohd Imran Ahamed,Hamida-Tun-Nisa Chisti
Publsiher: Materials Research Forum LLC
Total Pages: 184
Release: 2021-06-20
Genre: Technology & Engineering
ISBN: 9781644901403

Download Materials for Solar Cell Technologies II Book in PDF, Epub and Kindle

The book presents current R&D and new trends in the field of solar cell technologies. Topics covered include fabrication methods, various types of cell design, versatile applications of solar cells, PEDOT:PSS thermoelectric materials, transparent conducting electrodes, simulation models for solar photovoltaic materials, and hybrid materials for solar cells. Keywords: Optoelectronic Devices, PEDOT:PSS Materials, Nanomaterials, Transparent Electrodes, Hybrid Solar Cell Materials, Simulation Models, Solar Cell Design, Solar Cell Applications.