Dislocation Dynamics and Plasticity

Dislocation Dynamics and Plasticity
Author: Taira Suzuki,Shin Takeuchi,Hideo Yoshinaga
Publsiher: Springer Science & Business Media
Total Pages: 237
Release: 2013-03-07
Genre: Science
ISBN: 9783642757747

Download Dislocation Dynamics and Plasticity Book in PDF, Epub and Kindle

In the 1950s the direct observation of dislocations became possible, stimulat ing the interest of many research workers in the dynamics of dislocations. This led to major contributions to the understanding of the plasticity of various crys talline materials. During this time the study of metals and alloys of fcc and hcp structures developed remarkably. In particular, the discovery of the so-called in ertial effect caused by the electron and phonon frictional forces greatly influenced the quantitative understanding of the strength of these metallic materials. Statis tical studies of dislocations moving through random arrays of point obstacles played an important role in the above advances. These topics are described in Chaps. 2-4. Metals and alloys with bcc structure have large Peierls forces compared to those with fcc structure. The reasons for the delay in studying substances with bcc structure were mostly difficulties connected with the purification techniques and with microscopic studies of the dislocation core. In the 1970s, these difficulties were largely overcome by developments in experimental techniques and computer physics. Studies of dislocations in ionic and covalent bonding materials with large Peierls forces provided infonnation about the core structures of dislocations and their electronic interactions with charged particles. These are the main subjects in Chaps. 5-7.

Dislocation Dynamics and Core Structure

Dislocation Dynamics and Core Structure
Author: Karin Shu Lin
Publsiher: Unknown
Total Pages: 202
Release: 2000
Genre: Electronic Book
ISBN: UCAL:C3445683

Download Dislocation Dynamics and Core Structure Book in PDF, Epub and Kindle

Dislocation Dynamics and Plasticity

Dislocation Dynamics and Plasticity
Author: Taira Suzuki,Shin Takeuchi,Hideo Yoshinaga
Publsiher: Unknown
Total Pages: 244
Release: 1991-04-30
Genre: Electronic Book
ISBN: 3642757758

Download Dislocation Dynamics and Plasticity Book in PDF, Epub and Kindle

This textbook gives a clear, well-illustrated account of the current understanding of the physics of plasticity. The plastic deformation of various types of crystals over a wide range of temperature is treated in terms of dynamical properties of dislocations. Special effects of plasticity, e.g. softening of metals at the superconducting transition and photoplastic effects in semiconducting crystals, are emphasized, as well as creep deformation in metals and composite materials.

Dislocation Dynamics During Plastic Deformation

Dislocation Dynamics During Plastic Deformation
Author: Ulrich Messerschmidt
Publsiher: Springer Science & Business Media
Total Pages: 503
Release: 2010-04-19
Genre: Science
ISBN: 9783642031779

Download Dislocation Dynamics During Plastic Deformation Book in PDF, Epub and Kindle

Along with numerous illustrative examples, this text provides an overview of the dynamic behavior of dislocations and its relation to plastic deformation. It introduces the general properties of dislocations and treats the dislocation dynamics in some detail.

The Plasticity of Metals at the Sub micrometer Scale and Dislocation Dynamics in a Thin Film

The Plasticity of Metals at the Sub micrometer Scale and Dislocation Dynamics in a Thin Film
Author: Seok Woo Lee
Publsiher: Stanford University
Total Pages: 186
Release: 2011
Genre: Electronic Book
ISBN: STANFORD:tf313qt3147

Download The Plasticity of Metals at the Sub micrometer Scale and Dislocation Dynamics in a Thin Film Book in PDF, Epub and Kindle

Nanotechnology has played a significant role in the development of useful engineering devices and in the synthesis of new classes of materials. For the reliable design of devices and for structural applications of materials with micro- or nano-sized features, nanotechnology has always called for an understanding of the mechanical properties of materials at small length scales. Thus, it becomes important to develop new experimental techniques to allow reliable mechanical testing at small scales. At the same time, the development of computational techniques is necessary to interpret the experimentally observed phenomena. Currently, microcompression testing of micropillars, which are fabricated by focused-ion beam (FIB) milling, is one of the most popular experimental methods for measuring the mechanical properties at the micrometer scale. Also, dislocation dynamics codes have been extensively developed to study the local evolution of dislocation structures. Therefore, we conducted both experimental and theoretical studies that shed new light on the factors that control the strength and plasticity of crystalline materials at the sub-micrometer scale. In the experimental work, we produced gold nanopillars by focused-ion beam milling, and conducted microcompression tests to obtain the stress-strain curves. Firstly, the size effects on the strength of gold nanopillars were studied, and "Smaller is Stronger" was observed. Secondly, we tried to change the dislocation densities to control the strength of gold nanopillars by prestraining and annealing. The results showed that prestraining dramatically reduces the flow strength of nanopillars while annealing restores the strength to the pristine levels. Transmission electron microscopy (TEM) revealed that the high dislocation density (~1015 m-2) of prestrained nanopillars significantly decreased after heavy plastic deformation. In order to interpret this TEM observation, potential dislocation source structures were geometrically analyzed. We found that the insertion of jogged dislocations before relaxation or enabling cross-slip during plastic flow are prerequisites for the formation of potentially strong natural pinning points and single arm dislocation sources. At the sub-micron scale, these conditions are most likely absent, and we argue that mobile dislocation starvation would occur naturally in the course of plastic flow. Two more outstanding issues have also been studied in this dissertation. The first involves the effects of FIB milling on the mechanical properties. Since micropillars are made by FIB milling, the damage layer at the free surface is always formed and would be expected to affect the mechanical properties at a sub-micron scale. Thus, pristine gold microparticles were produced by a solid-state dewetting technique, and the effects of FIB milling on both pristine and prestrained microparticles were examined via microcompression testing. These experiments revealed that FIB milling significantly reduces the strength of pristine microparticles, but does not alter that of prestrained microparticles. Thus, we confirmed that if there are pre-existing mobile-dislocations present in the crystal, FIB milling does not affect the mechanical properties. The second issue is the scaling law commonly used to describe the strength of micropillars as a function of sample size. For the scaling law, the power-law approximation has been widely used without understanding fundamental physics in it. Thus, we tried to analyze the power-law approximation in a quantitative manner with the well-known single arm source model. Material parameters, such as the friction stress, the anisotropic shear modulus, the magnitude of Burgers vector and the dislocation density, were explored to understand their effects on the scaling behavior. Considering these effects allows one to rationalize the observed material-dependent power-law exponents quantitatively. In another part of the dissertation, a computational study of dislocation dynamics in a free-standing thin film is described. We improved the ParaDiS (Parallel Dislocation Simulator) code, which was originally developed at the Lawrence Livermore National Laboratory, to deal with the free surface of a free-standing thin film. The spectral method was implemented to calculate the image stress field in a thin film. The faster convergence in the image stress calculation were obtained by employing Yoffe's image stress, which removes the singularity of the traction at the intersecting point between a threading dislocation and free surface. Using this newly developed code, we studied the stability of dislocation junctions and jogs, which are the potential dislocation sources, in a free standing thin film of a face-centered-cubic metal and discussed the creation of a dislocation source in a thin film. In summary, we have performed both microcompression tests and dislocation dynamics simulations to understand the dislocation mechanisms at the sub-micron scale and the related mechanical properties of metals. We believe that these experimental and computational studies have contributed to the enhancement of our fundamental knowledge of the plasticity of metals at the sub-micron scale.

Dislocations in Solids

Dislocations in Solids
Author: Anonim
Publsiher: Elsevier
Total Pages: 603
Release: 2004-08-05
Genre: Technology & Engineering
ISBN: 9780080472546

Download Dislocations in Solids Book in PDF, Epub and Kindle

This is the first volume to appear under the joint editorship of J.P. Hirth and F.R.N. Nabarro. While Volume 11 concentrated on the single topic of dislocations and work hardening, the present volume spreads over the whole range of the study of dislocations from the application by Kléman and his colleagues of homotopy theory to classifying the line and point defects of mesomorphic phases to Chaudhri's account of the experimental observations of dislocations formed around indentations.Chapter 64, by Cai, Bulatove, Chang, Li and Yip, discusses the influence of the structure of the core of a dislocation on its mobility. The power of modern computation allows this topic to be treated from the first principles of electron theory, and with empirical potentials for more complicated problems. Advances in electron microscopy allow these theoretical predictions to be tested.In Chapter 65, Xu analyzes the emission of dislocations from the tip of a crack and its influence on the brittle to ductile transition. Again, the treatment is predominantly theoretical, but it is consistently related to the very practical example of alpha iron.In a dazzling interplay of experiment and abstract mathematics, Kléman, Lavrentovich and Nastishin analyze the line and point structural defects of the many mesomorphic phases which have become known in recent years.Chapter 67, by Coupeau, Girard and Rabier, is essentially experimental. It shows how the various modern techniques of scanning probe microscopy can be used to study dislocations and their interaction with the free surface.Chapter 68, by Mitchell and Heuer, considers the complex dislocations that can form in ceramic crystals on the basis of observations by transmission electron microscopy and presents mechanistic models for the motion of the dislocations in various temperature regimes.While the underlying aim of the study of dislocations in energetic crystals by Armstrong and Elban in Chapter 69 is to understand the role of dislocations in the process of detonation, it has the wider interest of studying dislocations in molecular crystals which are ``elastically soft, plastically hard, and brittle''.Chaudhri in Chapter 70 discusses the role of dislocations in indentation processes, largely on the basis of the elastic analysis by E.H. Yoffe. The special case of nanoindentations is treated only briefly.

Dislocation dynamics

Dislocation dynamics
Author: Alan R. Rosenfield
Publsiher: Unknown
Total Pages: 776
Release: 1968
Genre: Dislocations in metals
ISBN: OCLC:256290535

Download Dislocation dynamics Book in PDF, Epub and Kindle

Extended Defects in Semiconductors

Extended Defects in Semiconductors
Author: D. B. Holt,B. G. Yacobi
Publsiher: Cambridge University Press
Total Pages: 625
Release: 2007-04-12
Genre: Science
ISBN: 9781139463591

Download Extended Defects in Semiconductors Book in PDF, Epub and Kindle

A discussion of the basic properties of structurally extended defects, their effect on the electronic properties of semiconductors, their role in semiconductor devices, and techniques for their characterization. This text is suitable for advanced undergraduate and graduate students in materials science and engineering, and for those studying semiconductor physics.