Distributed Network Structure Estimation Using Consensus Methods

Distributed Network Structure Estimation Using Consensus Methods
Author: Sai Zhang,Cihan Tepedelenlioglu,Andreas Spanias,Mahesh Banavar
Publsiher: Springer Nature
Total Pages: 76
Release: 2022-05-31
Genre: Technology & Engineering
ISBN: 9783031016844

Download Distributed Network Structure Estimation Using Consensus Methods Book in PDF, Epub and Kindle

The area of detection and estimation in a distributed wireless sensor network (WSN) has several applications, including military surveillance, sustainability, health monitoring, and Internet of Things (IoT). Compared with a wired centralized sensor network, a distributed WSN has many advantages including scalability and robustness to sensor node failures. In this book, we address the problem of estimating the structure of distributed WSNs. First, we provide a literature review in: (a) graph theory; (b) network area estimation; and (c) existing consensus algorithms, including average consensus and max consensus. Second, a distributed algorithm for counting the total number of nodes in a wireless sensor network with noisy communication channels is introduced. Then, a distributed network degree distribution estimation (DNDD) algorithm is described. The DNDD algorithm is based on average consensus and in-network empirical mass function estimation. Finally, a fully distributed algorithm for estimating the center and the coverage region of a wireless sensor network is described. The algorithms introduced are appropriate for most connected distributed networks. The performance of the algorithms is analyzed theoretically, and simulations are performed and presented to validate the theoretical results. In this book, we also describe how the introduced algorithms can be used to learn global data information and the global data region.

Studies to Combat COVID 19 using Science and Engineering

Studies to Combat COVID 19 using Science and Engineering
Author: Dana Barry,Hideyuki Kanematsu
Publsiher: Springer Nature
Total Pages: 189
Release: 2022-06-27
Genre: Science
ISBN: 9789811913563

Download Studies to Combat COVID 19 using Science and Engineering Book in PDF, Epub and Kindle

This unique book provides excellent examples of ongoing, leading-edge research related to viruses, especially COVID-19. It is written from the viewpoint of various scientific fields including materials science. It introduces and describes viruses (submicroscopic infectious agents that replicate inside the living cells of an organism), various infections caused by viruses (human to human, human to other organisms to humans, humans to materials to humans, etc.), not only from the viewpoint of medical research but also from other scientific disciplines. A major focus of the book is the COVID-19 virus. Highlighted topics include the evolution of COVID-19, transmission of virus particles through the air, virus spread through various materials, detection of the virus by testing wastewater, the development and testing of vaccines and therapeutic drugs, and the preparation for future viruses and pandemics. This includes reform in funeral services to properly and safely accommodate very large numbers of bodies in a pandemic, like those seen in New York City when it was the epicenter for the virus in the United States. This book serves as an excellent and very informative guide (practical book) for engineers and researchers of various backgrounds and as a great academic textbook.

Wireless Sensor Networks

Wireless Sensor Networks
Author: Cailian Chen,Shanying Zhu,Xinping Guan,Xuemin (Sherman) Shen
Publsiher: Springer
Total Pages: 96
Release: 2014-12-10
Genre: Computers
ISBN: 9783319123790

Download Wireless Sensor Networks Book in PDF, Epub and Kindle

This SpringerBrief evaluates the cooperative effort of sensor nodes to accomplish high-level tasks with sensing, data processing and communication. The metrics of network-wide convergence, unbiasedness, consistency and optimality are discussed through network topology, distributed estimation algorithms and consensus strategy. Systematic analysis reveals that proper deployment of sensor nodes and a small number of low-cost relays (without sensing function) can speed up the information fusion and thus improve the estimation capability of wireless sensor networks (WSNs). This brief also investigates the spatial distribution of sensor nodes and basic scalable estimation algorithms, the consensus-based estimation capability for a class of relay assisted sensor networks with asymmetric communication topology, and the problem of filter design for mobile target tracking over WSNs. From the system perspective, the network topology is closely related to the capability and efficiency of network-wide scalable distributed estimation. Wireless Sensor Networks: Distributed Consensus Estimation is a valuable resource for researchers and professionals working in wireless communications, networks and distributed computing. Advanced-level students studying computer science and electrical engineering will also find the content helpful.

Applications and Methods in Genomic Networks

Applications and Methods in Genomic Networks
Author: Kimberly Glass,Maud Fagny,Marieke Lydia Kuijjer
Publsiher: Frontiers Media SA
Total Pages: 234
Release: 2022-07-01
Genre: Science
ISBN: 9782889764822

Download Applications and Methods in Genomic Networks Book in PDF, Epub and Kindle

Submodularity in Dynamics and Control of Networked Systems

Submodularity in Dynamics and Control of Networked Systems
Author: Andrew Clark,Basel Alomair,Linda Bushnell,Radha Poovendran
Publsiher: Springer
Total Pages: 210
Release: 2015-12-21
Genre: Technology & Engineering
ISBN: 9783319269771

Download Submodularity in Dynamics and Control of Networked Systems Book in PDF, Epub and Kindle

This book presents a framework for the control of networked systems utilizing submodular optimization techniques. The main focus is on selecting input nodes for the control of networked systems, an inherently discrete optimization problem with applications in power system stability, social influence dynamics, and the control of vehicle formations. The first part of the book is devoted to background information on submodular functions, matroids, and submodular optimization, and presents algorithms for distributed submodular optimization that are scalable to large networked systems. In turn, the second part develops a unifying submodular optimization approach to controlling networked systems based on multiple performance and controllability criteria. Techniques are introduced for selecting input nodes to ensure smooth convergence, synchronization, and robustness to environmental and adversarial noise. Submodular optimization is the first unifying approach towards guaranteeing both performance and controllability with provable optimality bounds in static as well as time-varying networks. Throughout the text, the submodular framework is illustrated with the help of numerical examples and application-based case studies in biological, energy and vehicular systems. The book effectively combines two areas of growing interest, and will be especially useful for researchers in control theory, applied mathematics, networking or machine learning with experience in submodular optimization but who are less familiar with the problems and tools available for networked systems (or vice versa). It will also benefit graduate students, offering consistent terminology and notation that greatly reduces the initial effort associated with beginning a course of study in a new area.

Networked Filtering and Fusion in Wireless Sensor Networks

Networked Filtering and Fusion in Wireless Sensor Networks
Author: Magdi S. Mahmoud,Yuanqing Xia
Publsiher: CRC Press
Total Pages: 578
Release: 2014-12-20
Genre: Computers
ISBN: 9781482250961

Download Networked Filtering and Fusion in Wireless Sensor Networks Book in PDF, Epub and Kindle

By exploiting the synergies among available data, information fusion can reduce data traffic, filter noisy measurements, and make predictions and inferences about a monitored entity. Networked Filtering and Fusion in Wireless Sensor Networks introduces the subject of multi-sensor fusion as the method of choice for implementing distributed systems. The book examines the state of the art in information fusion. It presents the known methods, algorithms, architectures, and models of information fusion and discusses their applicability in the context of wireless sensor networks (WSNs). Paying particular attention to the wide range of topics that have been covered in recent literature, the text presents the results of a number of typical case studies. Complete with research supported elements and comprehensive references, this teaching-oriented volume uses standard scientific terminology, conventions, and notations throughout. It applies recently developed convex optimization theory and highly efficient algorithms in estimation fusion to open up discussion and provide researchers with an ideal starting point for further research on distributed estimation and fusion for WSNs. The book supplies a cohesive overview of the key results of theory and applications of information-fusion-related problems in networked systems in a unified framework. Providing advanced mathematical treatment of fundamental problems with information fusion, it will help you broaden your understanding of prospective applications and how to address such problems in practice. After reading the book, you will gain the understanding required to model parts of dynamic systems and use those models to develop distributed fusion control algorithms that are based on feedback control theory.

Cooperative Control of Nonlinear Networked Systems

Cooperative Control of Nonlinear Networked Systems
Author: Yongduan Song,Yujuan Wang
Publsiher: Springer
Total Pages: 197
Release: 2019-01-01
Genre: Technology & Engineering
ISBN: 9783030049720

Download Cooperative Control of Nonlinear Networked Systems Book in PDF, Epub and Kindle

Cooperative Control of Nonlinear Networked Systems is concerned with the distributed cooperative control of multiple networked nonlinear systems in the presence of unknown non-parametric uncertainties and non-vanishing disturbances under certain communication conditions. It covers stability analysis tools and distributed control methods for analyzing and synthesizing nonlinear networked systems. The book presents various solutions to cooperative control problems of multiple networked nonlinear systems on graphs. The book includes various examples with segments of MATLABĀ® codes for readers to verify, validate, and replicate the results. The authors present a series of new control results for nonlinear networked systems subject to both non-parametric and non-vanishing uncertainties, including the cooperative uniformly ultimately bounded (CUUB) result, finite-time stability result, and finite-time cooperative uniformly ultimately bounded (FT-CUUB) result. With some mathematical tools, such as algebraic graph theory and certain aspects of matrix analysis theory introduced by the authors, the readers can obtain a deeper understanding of the roles of matrix operators as mathematical machinery for cooperative control design for multi-agent systems. Cooperative Control of Nonlinear Networked Systems is a valuable source of information for researchers and engineers in cooperative adaptive control, as its technical contents are presented with examples in full analytical and numerical detail, and graphically illustrated for easy-to-understand results. Scientists in research institutes and academics in universities working on nonlinear systems, adaptive control and distributed control will find the book of interest, as it contains multi-disciplinary problems and covers different areas of research.

Network Topology and Fault Tolerant Consensus

Network Topology and Fault Tolerant Consensus
Author: Dimitris Sakavalas,Lewis Tseng
Publsiher: Springer Nature
Total Pages: 129
Release: 2022-05-31
Genre: Computers
ISBN: 9783031020148

Download Network Topology and Fault Tolerant Consensus Book in PDF, Epub and Kindle

As the structure of contemporary communication networks grows more complex, practical networked distributed systems become prone to component failures. Fault-tolerant consensus in message-passing systems allows participants in the system to agree on a common value despite the malfunction or misbehavior of some components. It is a task of fundamental importance for distributed computing, due to its numerous applications. We summarize studies on the topological conditions that determine the feasibility of consensus, mainly focusing on directed networks and the case of restricted topology knowledge at each participant. Recently, significant efforts have been devoted to fully characterize the underlying communication networks in which variations of fault-tolerant consensus can be achieved. Although the deduction of analogous topological conditions for undirected networks of known topology had shortly followed the introduction of the problem, their extension to the directed network case has been proven a highly non-trivial task. Moreover, global knowledge restrictions, inherent in modern large-scale networks, require more elaborate arguments concerning the locality of distributed computations. In this work, we present the techniques and ideas used to resolve these issues. Recent studies indicate a number of parameters that affect the topological conditions under which consensus can be achieved, namely, the fault model, the degree of system synchrony (synchronous vs. asynchronous), the type of agreement (exact vs. approximate), the level of topology knowledge, and the algorithm class used (general vs. iterative). We outline the feasibility and impossibility results for various combinations of the above parameters, extensively illustrating the relation between network topology and consensus.