Dynamic Scenarios in Two State Quantum Dot Lasers

Dynamic Scenarios in Two State Quantum Dot Lasers
Author: André Röhm
Publsiher: Unknown
Total Pages: 135
Release: 2015
Genre: Electronic Book
ISBN: 3658094036

Download Dynamic Scenarios in Two State Quantum Dot Lasers Book in PDF, Epub and Kindle

André Röhm investigates the dynamic properties of two-state lasing quantum dot lasers, with a focus on ground state quenching. With a novel semi-analytical approach, different quenching mechanisms are discussed in an unified framework and verified with numerical simulations. The known results and experimental findings are reproduced and parameter dependencies are systematically studied. Additionally, the turn-on dynamics and modulation response curves of two-state lasing devices are presented. Contents Quantum Dot Laser Theory Two-State Lasing and Ground-State Quenching Modulation Response Target Groups Researchers and students in the field of theoretical physics Practitioners in this area The Author André Röhm wrote his master's thesis under the supervision of Prof. Dr. Eckehard Schöll, PhD and Prof. Dr. Kathy Lüdge in the Collaborative Research Center SFB 910 at the Institute of Theoretical Physics at TU Berlin.

Dynamic Scenarios in Two State Quantum Dot Lasers

Dynamic Scenarios in Two State Quantum Dot Lasers
Author: André Röhm
Publsiher: Springer
Total Pages: 113
Release: 2015-03-25
Genre: Science
ISBN: 9783658094027

Download Dynamic Scenarios in Two State Quantum Dot Lasers Book in PDF, Epub and Kindle

André Röhm investigates the dynamic properties of two-state lasing quantum dot lasers, with a focus on ground state quenching. With a novel semi-analytical approach, different quenching mechanisms are discussed in an unified framework and verified with numerical simulations. The known results and experimental findings are reproduced and parameter dependencies are systematically studied. Additionally, the turn-on dynamics and modulation response curves of two-state lasing devices are presented.

Quantum Dot Based Semiconductor Optical Amplifiers for O Band Optical Communication

Quantum Dot Based Semiconductor Optical Amplifiers for O Band Optical Communication
Author: Holger Schmeckebier
Publsiher: Springer
Total Pages: 190
Release: 2016-10-21
Genre: Technology & Engineering
ISBN: 9783319442754

Download Quantum Dot Based Semiconductor Optical Amplifiers for O Band Optical Communication Book in PDF, Epub and Kindle

This thesis examines the unique properties of gallium arsenide (GaAs)-based quantum-dot semiconductor optical amplifiers for optical communication networks, introducing readers to their fundamentals, basic parameters and manifold applications. The static and dynamic properties of these amplifiers are discussed extensively in comparison to conventional, non quantum-dot based amplifiers, and their unique advantages are elaborated on, such as the fast carrier dynamics and the decoupling of gain and phase dynamics. In addition to diverse amplification scenarios involving single and multiple high symbol rate amplitude and phase-coded data signals, wide-range wavelength conversion as a key functionality for optical signal processing is investigated and discussed in detail. Furthermore, two novel device concepts are developed and demonstrated that have the potential to significantly simplify network architectures, reducing the investment and maintenance costs as well as the energy consumption of future networks.

Nonlinear and Nonequilibrium Dynamics of Quantum Dot Optoelectronic Devices

Nonlinear and Nonequilibrium Dynamics of Quantum Dot Optoelectronic Devices
Author: Benjamin Lingnau
Publsiher: Springer
Total Pages: 193
Release: 2015-12-14
Genre: Science
ISBN: 9783319258058

Download Nonlinear and Nonequilibrium Dynamics of Quantum Dot Optoelectronic Devices Book in PDF, Epub and Kindle

This thesis sheds light on the unique dynamics of optoelectronic devices based on semiconductor quantum-dots. The complex scattering processes involved in filling the optically active quantum-dot states and the presence of charge-carrier nonequilibrium conditions are identified as sources for the distinct dynamical behavior of quantum-dot based devices. Comprehensive theoretical models, which allow for an accurate description of such devices, are presented and applied to recent experimental observations. The low sensitivity of quantum-dot lasers to optical perturbations is directly attributed to their unique charge-carrier dynamics and amplitude-phase-coupling, which is found not to be accurately described by conventional approaches. The potential of quantum-dot semiconductor optical amplifiers for novel applications such as simultaneous multi-state amplification, ultra-wide wavelength conversion, and coherent pulse shaping is investigated. The scattering mechanisms and the unique electronic structure of semiconductor quantum-dots are found to make such devices prime candidates for the implementation of next-generation optoelectronic applications, which could significantly simplify optical telecommunication networks and open up novel high-speed data transmission schemes.

Ultrafast Lasers Based on Quantum Dot Structures

Ultrafast Lasers Based on Quantum Dot Structures
Author: Edik U. Rafailov,Maria Ana Cataluna,Eugene A. Avrutin
Publsiher: John Wiley & Sons
Total Pages: 243
Release: 2011-04-08
Genre: Science
ISBN: 9783527634491

Download Ultrafast Lasers Based on Quantum Dot Structures Book in PDF, Epub and Kindle

In this monograph, the authors address the physics and engineering together with the latest achievements of efficient and compact ultrafast lasers based on novel quantum-dot structures and devices. Their approach encompasses a broad range of laser systems, while taking into consideration not only the physical and experimental aspects but also the much needed modeling tools, thus providing a holistic understanding of this hot topic.

The Physics and Engineering of Compact Quantum Dot based Lasers for Biophotonics

The Physics and Engineering of Compact Quantum Dot based Lasers for Biophotonics
Author: Edik U. Rafailov
Publsiher: John Wiley & Sons
Total Pages: 349
Release: 2013-12-30
Genre: Science
ISBN: 9783527665600

Download The Physics and Engineering of Compact Quantum Dot based Lasers for Biophotonics Book in PDF, Epub and Kindle

Written by a team of European experts in the field, this book addresses the physics, the principles, the engineering methods, and the latest developments of efficient and compact ultrafast lasers based on novel quantum-dot structures and devices, as well as their applications in biophotonics. Recommended reading for physicists, engineers, students and lecturers in the fields of photonics, optics, laser physics, optoelectronics, and biophotonics.

Dynamics of Quantum Dot Lasers

Dynamics of Quantum Dot Lasers
Author: Christian Otto
Publsiher: Springer Science & Business Media
Total Pages: 301
Release: 2014-01-21
Genre: Science
ISBN: 9783319037868

Download Dynamics of Quantum Dot Lasers Book in PDF, Epub and Kindle

This thesis deals with the dynamics of state-of-the-art nanophotonic semiconductor structures, providing essential information on fundamental aspects of nonlinear dynamical systems on the one hand, and technological applications in modern telecommunication on the other. Three different complex laser structures are considered in detail: (i) a quantum-dot-based semiconductor laser under optical injection from a master laser, (ii) a quantum-dot laser with optical feedback from an external resonator, and (iii) a passively mode-locked quantum-well semiconductor laser with saturable absorber under optical feedback from an external resonator. Using a broad spectrum of methods, both numerical and analytical, this work achieves new fundamental insights into the interplay of microscopically based nonlinear laser dynamics and optical perturbations by delayed feedback and injection.

Nonlinear Laser Dynamics

Nonlinear Laser Dynamics
Author: Kathy Lüdge
Publsiher: John Wiley & Sons
Total Pages: 412
Release: 2012-04-09
Genre: Science
ISBN: 9783527639830

Download Nonlinear Laser Dynamics Book in PDF, Epub and Kindle

A distinctive discussion of the nonlinear dynamical phenomena of semiconductor lasers. The book combines recent results of quantum dot laser modeling with mathematical details and an analytic understanding of nonlinear phenomena in semiconductor lasers and points out possible applications of lasers in cryptography and chaos control. This interdisciplinary approach makes it a unique and powerful source of knowledge for anyone intending to contribute to this field of research. By presenting both experimental and theoretical results, the distinguished authors consider solitary lasers with nano-structured material, as well as integrated devices with complex feedback sections. In so doing, they address such topics as the bifurcation theory of systems with time delay, analysis of chaotic dynamics, and the modeling of quantum transport. They also address chaos-based cryptography as an example of the technical application of highly nonlinear laser systems.