Dynamical Systems in Neuroscience

Dynamical Systems in Neuroscience
Author: Eugene M. Izhikevich
Publsiher: MIT Press
Total Pages: 459
Release: 2010-01-22
Genre: Medical
ISBN: 9780262514200

Download Dynamical Systems in Neuroscience Book in PDF, Epub and Kindle

Explains the relationship of electrophysiology, nonlinear dynamics, and the computational properties of neurons, with each concept presented in terms of both neuroscience and mathematics and illustrated using geometrical intuition. In order to model neuronal behavior or to interpret the results of modeling studies, neuroscientists must call upon methods of nonlinear dynamics. This book offers an introduction to nonlinear dynamical systems theory for researchers and graduate students in neuroscience. It also provides an overview of neuroscience for mathematicians who want to learn the basic facts of electrophysiology. Dynamical Systems in Neuroscience presents a systematic study of the relationship of electrophysiology, nonlinear dynamics, and computational properties of neurons. It emphasizes that information processing in the brain depends not only on the electrophysiological properties of neurons but also on their dynamical properties. The book introduces dynamical systems, starting with one- and two-dimensional Hodgkin-Huxley-type models and continuing to a description of bursting systems. Each chapter proceeds from the simple to the complex, and provides sample problems at the end. The book explains all necessary mathematical concepts using geometrical intuition; it includes many figures and few equations, making it especially suitable for non-mathematicians. Each concept is presented in terms of both neuroscience and mathematics, providing a link between the two disciplines. Nonlinear dynamical systems theory is at the core of computational neuroscience research, but it is not a standard part of the graduate neuroscience curriculum—or taught by math or physics department in a way that is suitable for students of biology. This book offers neuroscience students and researchers a comprehensive account of concepts and methods increasingly used in computational neuroscience. An additional chapter on synchronization, with more advanced material, can be found at the author's website, www.izhikevich.com.

An Introduction to Modeling Neuronal Dynamics

An Introduction to Modeling Neuronal Dynamics
Author: Christoph Börgers
Publsiher: Springer
Total Pages: 457
Release: 2017-04-17
Genre: Mathematics
ISBN: 9783319511719

Download An Introduction to Modeling Neuronal Dynamics Book in PDF, Epub and Kindle

This book is intended as a text for a one-semester course on Mathematical and Computational Neuroscience for upper-level undergraduate and beginning graduate students of mathematics, the natural sciences, engineering, or computer science. An undergraduate introduction to differential equations is more than enough mathematical background. Only a slim, high school-level background in physics is assumed, and none in biology. Topics include models of individual nerve cells and their dynamics, models of networks of neurons coupled by synapses and gap junctions, origins and functions of population rhythms in neuronal networks, and models of synaptic plasticity. An extensive online collection of Matlab programs generating the figures accompanies the book.

Neuronal Dynamics

Neuronal Dynamics
Author: Wulfram Gerstner,Werner M. Kistler,Richard Naud,Liam Paninski
Publsiher: Cambridge University Press
Total Pages: 591
Release: 2014-07-24
Genre: Computers
ISBN: 9781107060838

Download Neuronal Dynamics Book in PDF, Epub and Kindle

This solid introduction uses the principles of physics and the tools of mathematics to approach fundamental questions of neuroscience.

Dynamical Systems in Neuroscience

Dynamical Systems in Neuroscience
Author: E. M. Izhikevich
Publsiher: Unknown
Total Pages: 135
Release: 2005
Genre: Electronic Book
ISBN: OCLC:71676423

Download Dynamical Systems in Neuroscience Book in PDF, Epub and Kindle

Dynamic Neuroscience

Dynamic Neuroscience
Author: Zhe Chen,Sridevi V. Sarma
Publsiher: Springer
Total Pages: 327
Release: 2017-12-27
Genre: Technology & Engineering
ISBN: 9783319719764

Download Dynamic Neuroscience Book in PDF, Epub and Kindle

This book shows how to develop efficient quantitative methods to characterize neural data and extra information that reveals underlying dynamics and neurophysiological mechanisms. Written by active experts in the field, it contains an exchange of innovative ideas among researchers at both computational and experimental ends, as well as those at the interface. Authors discuss research challenges and new directions in emerging areas with two goals in mind: to collect recent advances in statistics, signal processing, modeling, and control methods in neuroscience; and to welcome and foster innovative or cross-disciplinary ideas along this line of research and discuss important research issues in neural data analysis. Making use of both tutorial and review materials, this book is written for neural, electrical, and biomedical engineers; computational neuroscientists; statisticians; computer scientists; and clinical engineers.

Data Driven Science and Engineering

Data Driven Science and Engineering
Author: Steven L. Brunton,J. Nathan Kutz
Publsiher: Cambridge University Press
Total Pages: 615
Release: 2022-05-05
Genre: Computers
ISBN: 9781009098489

Download Data Driven Science and Engineering Book in PDF, Epub and Kindle

A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.

Dynamic Thinking

Dynamic Thinking
Author: Gregor Schöner,John P. Spencer,D. F. T. Research Group
Publsiher: Oxford University Press
Total Pages: 421
Release: 2016
Genre: Psychology
ISBN: 9780199300563

Download Dynamic Thinking Book in PDF, Epub and Kindle

"This book describes a new theoretical approach--Dynamic Field Theory (DFT)--that explains how people think and act"--

Mathematical Foundations of Neuroscience

Mathematical Foundations of Neuroscience
Author: G. Bard Ermentrout,David H. Terman
Publsiher: Springer Science & Business Media
Total Pages: 434
Release: 2010-07-01
Genre: Mathematics
ISBN: 9780387877082

Download Mathematical Foundations of Neuroscience Book in PDF, Epub and Kindle

This book applies methods from nonlinear dynamics to problems in neuroscience. It uses modern mathematical approaches to understand patterns of neuronal activity seen in experiments and models of neuronal behavior. The intended audience is researchers interested in applying mathematics to important problems in neuroscience, and neuroscientists who would like to understand how to create models, as well as the mathematical and computational methods for analyzing them. The authors take a very broad approach and use many different methods to solve and understand complex models of neurons and circuits. They explain and combine numerical, analytical, dynamical systems and perturbation methods to produce a modern approach to the types of model equations that arise in neuroscience. There are extensive chapters on the role of noise, multiple time scales and spatial interactions in generating complex activity patterns found in experiments. The early chapters require little more than basic calculus and some elementary differential equations and can form the core of a computational neuroscience course. Later chapters can be used as a basis for a graduate class and as a source for current research in mathematical neuroscience. The book contains a large number of illustrations, chapter summaries and hundreds of exercises which are motivated by issues that arise in biology, and involve both computation and analysis. Bard Ermentrout is Professor of Computational Biology and Professor of Mathematics at the University of Pittsburgh. David Terman is Professor of Mathematics at the Ohio State University.