Electromagnetic Computation Methods for Lightning Surge Protection Studies

Electromagnetic Computation Methods for Lightning Surge Protection Studies
Author: Yoshihiro Baba
Publsiher: Unknown
Total Pages: 315
Release: 2016
Genre: Electromagnetism
ISBN: OCLC:1066618324

Download Electromagnetic Computation Methods for Lightning Surge Protection Studies Book in PDF, Epub and Kindle

"Presents current research into electromagnetic computation theories with particular emphasis on Finite-Difference Time-Domain Method This book is the first to consolidate current research and to examine the theories of electromagnetic computation methods in relation to lightning surge protection. The authors introduce and compare existing electromagnetic computation methods such as the method of moments (MOM), the partial element equivalent circuit (PEEC), the finite element method (FEM), the transmission-line modeling (TLM) method, and the finite-difference time-domain (FDTD) method. The application of FDTD method to lightning protection studies is a topic that has matured through many practical applications in the past decade, and the authors explain the derivation of Maxwell's equations required by the FDTD, and modeling of various electrical components needed in computing lightning electromagnetic fields and surges with the FDTD method. The book describes the application of FDTD method to current and emerging problems of lightning surge protection of continuously more complex installations, particularly in critical infrastructures of energy and information, such as overhead power lines, air-insulated sub-stations, wind turbine generator towers and telecommunication towers. Both authors are internationally recognized experts in the area of lightning study and this is the first book to present current research in lightning surge protection Examines in detail why lightning surges occur and what can be done to protect against them Includes theories of electromagnetic computation methods and many examples of their application Accompanied by a sample printed program based on the finite-difference time-domain (FDTD) method written in C++ program "--

Electromagnetic Computation Methods for Lightning Surge Protection Studies

Electromagnetic Computation Methods for Lightning Surge Protection Studies
Author: Yoshihiro Baba,Vladimir A. Rakov
Publsiher: John Wiley & Sons
Total Pages: 338
Release: 2016-04-25
Genre: Science
ISBN: 9781118275634

Download Electromagnetic Computation Methods for Lightning Surge Protection Studies Book in PDF, Epub and Kindle

Presents current research into electromagnetic computation theories with particular emphasis on Finite-Difference Time-Domain Method This book is the first to consolidate current research and to examine the theories of electromagnetic computation methods in relation to lightning surge protection. The authors introduce and compare existing electromagnetic computation methods such as the method of moments (MOM), the partial element equivalent circuit (PEEC), the finite element method (FEM), the transmission-line modeling (TLM) method, and the finite-difference time-domain (FDTD) method. The application of FDTD method to lightning protection studies is a topic that has matured through many practical applications in the past decade, and the authors explain the derivation of Maxwell’s equations required by the FDTD, and modeling of various electrical components needed in computing lightning electromagnetic fields and surges with the FDTD method. The book describes the application of FDTD method to current and emerging problems of lightning surge protection of continuously more complex installations, particularly in critical infrastructures of energy and information, such as overhead power lines, air-insulated sub-stations, wind turbine generator towers and telecommunication towers. Both authors are internationally recognized experts in the area of lightning study and this is the first book to present current research in lightning surge protection Examines in detail why lightning surges occur and what can be done to protect against them Includes theories of electromagnetic computation methods and many examples of their application Accompanied by a sample printed program based on the finite-difference time-domain (FDTD) method written in C++ program

Computational Electromagnetics with MATLAB Fourth Edition

Computational Electromagnetics with MATLAB  Fourth Edition
Author: Matthew N.O. Sadiku
Publsiher: CRC Press
Total Pages: 687
Release: 2018-07-20
Genre: Technology & Engineering
ISBN: 9781351365093

Download Computational Electromagnetics with MATLAB Fourth Edition Book in PDF, Epub and Kindle

This fourth edition of the text reflects the continuing increase in awareness and use of computational electromagnetics and incorporates advances and refinements made in recent years. Most notable among these are the improvements made to the standard algorithm for the finite-difference time-domain (FDTD) method and treatment of absorbing boundary conditions in FDTD, finite element, and transmission-line-matrix methods. It teaches the readers how to pose, numerically analyze, and solve EM problems, to give them the ability to expand their problem-solving skills using a variety of methods, and to prepare them for research in electromagnetism. Includes new homework problems in each chapter. Each chapter is updated with the current trends in CEM. Adds a new appendix on CEM codes, which covers commercial and free codes. Provides updated MATLAB code.

Data Assessment for Electrical Surge Protective Devices

Data Assessment for Electrical Surge Protective Devices
Author: Eddie Davis,Nick Kooiman,Kylash Viswanathan
Publsiher: Springer
Total Pages: 36
Release: 2015-06-05
Genre: Technology & Engineering
ISBN: 9781493928927

Download Data Assessment for Electrical Surge Protective Devices Book in PDF, Epub and Kindle

This brief develops a data collection plan to assess loss related to electrical surges in homes, and explores the potential impact devices that prevent these surges could have in mitigating these losses. Key topics such as surge sources, surge effects and residential surge protection are clearly defined. Recent fire safety codes proposed a requirement that every dwelling unit be fitted with a surge protection device, as every year there is property damage to electrical and electronic equipment resulting from electrical surges. These proposals have not been implemented due to a lack of reliable data, which this brief seeks to change. The authors evaluate surge phenomena and their sources, surge protection methods, surge protection strategies and industry standards in order to present a data plan that can accurately assess loss related to electrical surges in homes.

Electromagnetic Transients in Power Systems

Electromagnetic Transients in Power Systems
Author: Pritindra Chowdhuri
Publsiher: Taylor & Francis Group
Total Pages: 428
Release: 1996
Genre: Technology & Engineering
ISBN: CORNELL:31924077500027

Download Electromagnetic Transients in Power Systems Book in PDF, Epub and Kindle

Electromagnetic transients in power systems are generated by lightning and switching surges and can result in frequent and costly failures of electrical systems. This book explains modern theories of the generation, propagation and interaction of electrical transients with electrical systems. It also covers practices for the protection of electrical systems against transients.Presents the basic mathematical and physical principles of electromagnetic transients. -- Addresses topics that are of prime importance to the electric power industry today, including lightning-induced voltages on overhead lines, protection of substations, and the effects of transient on low-voltage systems. -- Includes problems to facilitate understanding of the various topics.

The Engineering Index Annual

The Engineering Index Annual
Author: Anonim
Publsiher: Unknown
Total Pages: 2282
Release: 1988
Genre: Engineering
ISBN: MINN:31951000576919L

Download The Engineering Index Annual Book in PDF, Epub and Kindle

Since its creation in 1884, Engineering Index has covered virtually every major engineering innovation from around the world. It serves as the historical record of virtually every major engineering innovation of the 20th century. Recent content is a vital resource for current awareness, new production information, technological forecasting and competitive intelligence. The world?s most comprehensive interdisciplinary engineering database, Engineering Index contains over 10.7 million records. Each year, over 500,000 new abstracts are added from over 5,000 scholarly journals, trade magazines, and conference proceedings. Coverage spans over 175 engineering disciplines from over 80 countries. Updated weekly.

The Nystrom Method in Electromagnetics

The Nystrom Method in Electromagnetics
Author: Mei Song Tong,Weng Cho Chew
Publsiher: John Wiley & Sons
Total Pages: 522
Release: 2020-08-10
Genre: Science
ISBN: 9781119284840

Download The Nystrom Method in Electromagnetics Book in PDF, Epub and Kindle

A comprehensive, step-by-step reference to the Nyström Method for solving Electromagnetic problems using integral equations Computational electromagnetics studies the numerical methods or techniques that solve electromagnetic problems by computer programming. Currently, there are mainly three numerical methods for electromagnetic problems: the finite-difference time-domain (FDTD), finite element method (FEM), and integral equation methods (IEMs). In the IEMs, the method of moments (MoM) is the most widely used method, but much attention is being paid to the Nyström method as another IEM, because it possesses some unique merits which the MoM lacks. This book focuses on that method—providing information on everything that students and professionals working in the field need to know. Written by the top researchers in electromagnetics, this complete reference book is a consolidation of advances made in the use of the Nyström method for solving electromagnetic integral equations. It begins by introducing the fundamentals of the electromagnetic theory and computational electromagnetics, before proceeding to illustrate the advantages unique to the Nyström method through rigorous worked out examples and equations. Key topics include quadrature rules, singularity treatment techniques, applications to conducting and penetrable media, multiphysics electromagnetic problems, time-domain integral equations, inverse scattering problems and incorporation with multilevel fast multiple algorithm. Systematically introduces the fundamental principles, equations, and advantages of the Nyström method for solving electromagnetic problems Features the unique benefits of using the Nyström method through numerical comparisons with other numerical and analytical methods Covers a broad range of application examples that will point the way for future research The Nystrom Method in Electromagnetics is ideal for graduate students, senior undergraduates, and researchers studying engineering electromagnetics, computational methods, and applied mathematics. Practicing engineers and other industry professionals working in engineering electromagnetics and engineering mathematics will also find it to be incredibly helpful.

Lightning Interaction with Power Systems

Lightning Interaction with Power Systems
Author: Alexandre Piantini
Publsiher: Institution of Engineering and Technology
Total Pages: 497
Release: 2020-03-27
Genre: Technology & Engineering
ISBN: 9781839530920

Download Lightning Interaction with Power Systems Book in PDF, Epub and Kindle

The need to improve the reliability and robustness of power systems and smart grids makes protection of sensitive equipment and power transmission and distribution lines against lightning-related effects a primary concern. Renewable electricity generation capacity has been increasing all over the world, and lightning can cause failures either by hitting the turbines or panels directly or inducing transients on the control systems that lead to equipment failure, malfunction or degradation. This two-volume set assesses how global lightning may respond to global climate change, provides thorough coverage of the lightning phenomenon and its interaction with various objects, and covers methods for the effective protection of structures and systems. It is a valuable reference for researchers in the fields of lightning and power systems, for transmission and distribution line engineers and designers, and is a useful text for related advanced courses. Volume 1 covers fundamentals and modelling of lightning interaction with power systems. This Volume 2 addresses various applications including the application of the Monte Carlo method to lightning protection and insulation coordination practices; lightning interaction with power substations; lightning interaction with power transmission lines; lightning interaction with medium-voltage overhead power distribution systems; lightning interaction with low-voltage overhead power distribution networks; lightning protection of structures and electrical systems inside of buildings; lightning protection of smart grids; lightning protection of wind power systems; lightning protection of photovoltaic systems; measurement of lightning currents and voltages; application of the FDTD method to lightning studies; and software tools for lightning performance assessment.