Epitaxial Growth of Complex Metal Oxides

Epitaxial Growth of Complex Metal Oxides
Author: Gertjan Koster,Mark Huijben,Guus Rijnders
Publsiher: Woodhead Publishing
Total Pages: 534
Release: 2022-04-22
Genre: Science
ISBN: 9780081029466

Download Epitaxial Growth of Complex Metal Oxides Book in PDF, Epub and Kindle

Epitaxial Growth of Complex Metal Oxides, Second Edition reviews techniques and recent developments in the fabrication quality of complex metal oxides, which are facilitating advances in electronic, magnetic and optical applications. Sections review the key techniques involved in the epitaxial growth of complex metal oxides and explore the effects of strain and stoichiometry on crystal structure and related properties in thin film oxides. Finally, the book concludes by discussing selected examples of important applications of complex metal oxide thin films, including optoelectronics, batteries, spintronics and neuromorphic applications. This new edition has been fully updated, with brand new chapters on topics such as atomic layer deposition, interfaces, STEM-EELs, and the epitaxial growth of multiferroics, ferroelectrics and nanocomposites. Examines the techniques used in epitaxial thin film growth for complex oxides, including atomic layer deposition, sputtering techniques, molecular beam epitaxy, and chemical solution deposition techniques Reviews materials design strategies and materials property analysis methods, including the impacts of defects, strain, interfaces and stoichiometry Describes key applications of epitaxially grown metal oxides, including optoelectronics, batteries, spintronics and neuromorphic applications

Epitaxial Growth of Complex Metal Oxides Techniques Properties and Applications

Epitaxial Growth of Complex Metal Oxides  Techniques  Properties and Applications
Author: Anonim
Publsiher: Unknown
Total Pages: 135
Release: 2024
Genre: Electronic Book
ISBN: OCLC:972076032

Download Epitaxial Growth of Complex Metal Oxides Techniques Properties and Applications Book in PDF, Epub and Kindle

Metal Oxide Based Thin Film Structures

Metal Oxide Based Thin Film Structures
Author: Nini Pryds,Vincenzo Esposito
Publsiher: Elsevier
Total Pages: 560
Release: 2017-09-07
Genre: Technology & Engineering
ISBN: 9780081017524

Download Metal Oxide Based Thin Film Structures Book in PDF, Epub and Kindle

Metal Oxide-Based Thin Film Structures: Formation, Characterization and Application of Interface-Based Phenomena bridges the gap between thin film deposition and device development by exploring the synthesis, properties and applications of thin film interfaces. Part I deals with theoretical and experimental aspects of epitaxial growth, the structure and morphology of oxide-metal interfaces deposited with different deposition techniques and new developments in growth methods. Part II concerns analysis techniques for the electrical, optical, magnetic and structural properties of thin film interfaces. In Part III, the emphasis is on ionic and electronic transport at the interfaces of Metal-oxide thin films. Part IV discusses methods for tailoring metal oxide thin film interfaces for specific applications, including microelectronics, communication, optical electronics, catalysis, and energy generation and conservation. This book is an essential resource for anyone seeking to further their knowledge of metal oxide thin films and interfaces, including scientists and engineers working on electronic devices and energy systems and those engaged in research into electronic materials. Introduces the theoretical and experimental aspects of epitaxial growth for the benefit of readers new to the field Explores state-of-the-art analysis techniques and their application to interface properties in order to give a fuller understanding of the relationship between macroscopic properties and atomic-scale manipulation Discusses techniques for tailoring thin film interfaces for specific applications, including information, electronics and energy technologies, making this book essential reading for materials scientists and engineers alike

Magnetic Ferroelectric and Multiferroic Metal Oxides

Magnetic  Ferroelectric  and Multiferroic Metal Oxides
Author: Biljana Stojanovic
Publsiher: Elsevier
Total Pages: 661
Release: 2018-01-02
Genre: Technology & Engineering
ISBN: 9780128111819

Download Magnetic Ferroelectric and Multiferroic Metal Oxides Book in PDF, Epub and Kindle

Magnetic, Ferroelectric, and Multiferroic Metal Oxides covers the fundamental and theoretical aspects of ferroics and magnetoelectrics, their properties, and important technological applications, serving as the most comprehensive, up-to-date reference on the subject. Organized in four parts, Dr. Biljana Stojanovic leads expert contributors in providing the context to understand the material (Part I: Introduction), the theoretical and practical aspects of ferroelectrics (Part II: Ferroelectrics: From Theory, Structure and Preparation to Application), magnetic metal oxides (Part III: Magnetic Oxides: Ferromagnetics, Antiferromagnetics and Ferrimagnetics), multiferroics (Part IV: Multiferroic Metal Oxides) and future directions in research and application (Part V: Future of Metal Oxide Ferroics and Multiferroics). As ferroelectric materials are used to make capacitors with high dielectric constant, transducers, and actuators, and in sensors, reed heads, and memories based on giant magnetoresistive effects, this book will provide an ideal source for the most updated information. Addresses ferroelectrics, ferromagnetics and multiferroelectrics, providing a one-stop reference for researchers Provides fundamental theory and relevant, important technological applications Highlights their use in capacitors with high dielectric constant, transducers, and actuators, and in sensors, reed heads, and memories based on giant magnetoresistive effects

Epitaxy

Epitaxy
Author: Miao Zhong
Publsiher: BoD – Books on Demand
Total Pages: 246
Release: 2018-03-07
Genre: Technology & Engineering
ISBN: 9789535138891

Download Epitaxy Book in PDF, Epub and Kindle

The edited volume "Epitaxy" is a collection of reviewed and relevant research chapters, offering a comprehensive overview of recent developments in the field of materials science. The book comprises single chapters authored by various researchers and edited by an expert active in this research area. All chapters are complete in themselves but are united under a common research study topic. This publication aims at providing a thorough overview of the latest research efforts by international authors in the field of materials science as well as opening new possible research paths for further developments.

Advanced Ceramic Materials

Advanced Ceramic Materials
Author: Ashutosh Tiwari,Rosario A. Gerhardt,Magdalena Szutkowska
Publsiher: John Wiley & Sons
Total Pages: 448
Release: 2016-08-12
Genre: Technology & Engineering
ISBN: 9781119242727

Download Advanced Ceramic Materials Book in PDF, Epub and Kindle

Ceramic materials are inorganic and non-metallic porcelains, tiles, enamels, cements, glasses and refractory bricks. Today, "ceramics" has gained a wider meaning as a new generation of materials influence on our lives; electronics, computers, communications, aerospace and other industries rely on a number of their uses. In general, advanced ceramic materials include electro-ceramics, optoelectronic-ceramics, superconductive ceramics and the more recent development of piezoelectric and dielectric ceramics. They can be considered for their features including mechanical properties, decorative textures, environmental uses, energy applications, as well as their usage in bio-ceramics, composites, functionally graded materials, intelligent ceramics and so on. Advanced Ceramic Materials brings together a group of subject matter experts who describe innovative methodologies and strategies adopted in the research and development of the advanced ceramic materials. The book is written for readers from diverse backgrounds across chemistry, physics, materials science and engineering, medical science, pharmacy, environmental technology, biotechnology, and biomedical engineering. It offers a comprehensive view of cutting-edge research on ceramic materials and technologies. Divided into 3 parts concerning design, composites and functionality, the topics discussed include: Chemical strategies of epitaxial oxide ceramics nanomaterials Biphasic, triphasic and multiphasic calcium orthophosphates Microwave assisted processing of advanced ceramic composites Continuous fiber reinforced ceramic matrix composites Yytria and magnesia doped alumina ceramic Oxidation induced crack healing SWCNTs vs MWCNTs reinforcement agents Organic and inorganic wastes in clay brick production Functional tantalum oxides Application of silver tin research on hydroxyapatite

Molecular Beam Epitaxy

Molecular Beam Epitaxy
Author: Mohamed Henini
Publsiher: Newnes
Total Pages: 744
Release: 2012-12-31
Genre: Technology & Engineering
ISBN: 9780123918598

Download Molecular Beam Epitaxy Book in PDF, Epub and Kindle

This multi-contributor handbook discusses Molecular Beam Epitaxy (MBE), an epitaxial deposition technique which involves laying down layers of materials with atomic thicknesses on to substrates. It summarizes MBE research and application in epitaxial growth with close discussion and a ‘how to’ on processing molecular or atomic beams that occur on a surface of a heated crystalline substrate in a vacuum. MBE has expanded in importance over the past thirty years (in terms of unique authors, papers and conferences) from a pure research domain into commercial applications (prototype device structures and more at the advanced research stage). MBE is important because it enables new device phenomena and facilitates the production of multiple layered structures with extremely fine dimensional and compositional control. The techniques can be deployed wherever precise thin-film devices with enhanced and unique properties for computing, optics or photonics are required. This book covers the advances made by MBE both in research and mass production of electronic and optoelectronic devices. It includes new semiconductor materials, new device structures which are commercially available, and many more which are at the advanced research stage. Condenses fundamental science of MBE into a modern reference, speeding up literature review Discusses new materials, novel applications and new device structures, grounding current commercial applications with modern understanding in industry and research Coverage of MBE as mass production epitaxial technology enhances processing efficiency and throughput for semiconductor industry and nanostructured semiconductor materials research community

Epitaxial and Lateral Solid phase Crystallization of Complex Oxides

Epitaxial and Lateral Solid phase Crystallization of Complex Oxides
Author: Yajin Chen
Publsiher: Unknown
Total Pages: 150
Release: 2019
Genre: Electronic Book
ISBN: OCLC:1121080760

Download Epitaxial and Lateral Solid phase Crystallization of Complex Oxides Book in PDF, Epub and Kindle

The crystallization of complex-oxide materials through a transformation from the amorphous to crystalline forms presents a range of new opportunities to synthesize new materials, and simultaneously poses important scientific challenges. New crystallization method complements more conventional vapor-phase epitaxy techniques for epitaxial complex-oxide thin film growth that involve long-range surface diffusion on 2D planar crystal surfaces. The vapor-phase techniques are not readily adaptable to creating nanoscale epitaxial complex-oxide crystals. The alternative synthesis method described in this thesis is solid-phase crystallization, which is the crystallization of amorphous oxides, often in the form of thin films, by post-deposition heating. The creation of epitaxial complex-oxide nanostructures can facilitate their integration in 3D electronic, optoelectronic and ionic devices. Epitaxial complex-oxide crystals in intricate geometries can be created by solid-phase crystallization employing patterned substrates with a distribution of isolated crystalline seeds. This method requires the study of distinct crystal growth and nucleation kinetics on epitaxial and non-epitaxial surfaces. Nanoscale seeded crystallization can be achieved by understanding the relative rates of nucleation and lateral crystal growth processes, and the role of seeds in determining the overall orientation of the resulting crystals. Epitaxial complex-oxide thin films in intricate geometries with an expanded range of compositions can be created by combining the use of atomic layer deposition (ALD) and solid-phase crystallization, with the development of new ALD procedures to deposit amorphous oxide films and the study of the subsequent crystallization processes to select the crystalline structures of the crystallized film. ALD itself allows for the conformal deposition of thin films over non-planar surfaces. Solid-phase crystallization can also be used to deposit epitaxial complex-oxide thin films with a wider range of compositions, including those that cannot be deposited from the vapor phase at high temperatures. Such oxides include the oxides that have complex compositions and volatile components. The different kinetic constraints of solid-phase crystallization allow the epitaxial growth of those oxide thin films because of the slow diffusion in the solid state at relatively low crystallization temperatures. This thesis describes the discovery that, at low crystallization temperatures, epitaxial crystal growth of the model perovskite SrTiO3 on single-crystal SrTiO3 propagates over long distances without nucleation of SrTiO3 on Si with a native oxide. Two kinds of isolated nanoscale seed crystals are employed to study the seeded lateral crystallization of SrTiO3, yielding highly similar results. Micron-scale crystalline regions form surrounding the seeds before encountering separately nucleated crystals away from the seeds. Seed crystals play an important role in determining the orientations of the resulting crystals. New chemical precursors and ALD procedures were developed to grow amorphous PrAlO3 films. An epitaxial [lowercase gamma]-Al2O3 layer formed at the interface between the PrAlO3 film and (001) SrTiO3 substrate during the deposition. Epitaxial PrAlO3 films were achieved on (001) [lowercase gamma]-Al2O3/SrTiO3 by solid-phase epitaxy. The study of SrTiO3 and PrAlO[3] is also applicable to a series of chemically and structurally similar functional ABO3 compounds. The concepts of solid-phase crystallization also apply to oxides with multiple metal ions and more complex crystal structure. The kinetic processes occurring during the crystallization of ScAlMgO4, on (0001) sapphire substrates are quite different at two different temperatures. Epitaxial ScAlMgO4 crystals grow through the film thickness at a crystallization temperature of 950 °C. Solid-state reaction and evaporation of the component Sc prohibits the formation of large ScAlMgO4 crystals at a crystallization temperature of 1400 °C. Low-temperature crystallization can be used to create epitaxial oxide thin films with complex compositions and volatile components.