Field Computation by Moment Methods

Field Computation by Moment Methods
Author: Roger F. Harrington
Publsiher: Wiley-IEEE Press
Total Pages: 248
Release: 1993
Genre: Science
ISBN: UOM:39015035275539

Download Field Computation by Moment Methods Book in PDF, Epub and Kindle

"An IEEE reprinting of this classic 1968 edition, FIELD COMPUTATION BY MOMENT METHODS is the first book to explore the computation of electromagnetic fields by the most popular method for the numerical solution to electromagnetic field problems. It presents a unified approach to moment methods by employing the concepts of linear spaces and functional analysis. Written especially for those who have a minimal amount of experience in electromagnetic theory, this book illustrates theoretical and mathematical concepts to prepare all readers with the skills they need to apply the method of moments to new, engineering-related problems. Written especially for those who have a minimal amount of experience in electromagnetic theory, theoretical and mathematical concepts are illustrated by examples that prepare all readers with the skills they need to apply the method of moments to new, engineering-related problems."

Theory and Computation of Electromagnetic Fields

Theory and Computation of Electromagnetic Fields
Author: Jian-Ming Jin
Publsiher: John Wiley & Sons
Total Pages: 744
Release: 2015-08-10
Genre: Science
ISBN: 9781119108085

Download Theory and Computation of Electromagnetic Fields Book in PDF, Epub and Kindle

Reviews the fundamental concepts behind the theory and computation of electromagnetic fields The book is divided in two parts. The first part covers both fundamental theories (such as vector analysis, Maxwell’s equations, boundary condition, and transmission line theory) and advanced topics (such as wave transformation, addition theorems, and fields in layered media) in order to benefit students at all levels. The second part of the book covers the major computational methods for numerical analysis of electromagnetic fields for engineering applications. These methods include the three fundamental approaches for numerical analysis of electromagnetic fields: the finite difference method (the finite difference time-domain method in particular), the finite element method, and the integral equation-based moment method. The second part also examines fast algorithms for solving integral equations and hybrid techniques that combine different numerical methods to seek more efficient solutions of complicated electromagnetic problems. Theory and Computation of Electromagnetic Fields, Second Edition: Provides the foundation necessary for graduate students to learn and understand more advanced topics Discusses electromagnetic analysis in rectangular, cylindrical and spherical coordinates Covers computational electromagnetics in both frequency and time domains Includes new and updated homework problems and examples Theory and Computation of Electromagnetic Fields, Second Edition is written for advanced undergraduate and graduate level electrical engineering students. This book can also be used as a reference for professional engineers interested in learning about analysis and computation skills.

Microstrip Antenna Design Handbook

Microstrip Antenna Design Handbook
Author: Ramesh Garg
Publsiher: Artech House
Total Pages: 878
Release: 2001
Genre: Technology & Engineering
ISBN: 0890065136

Download Microstrip Antenna Design Handbook Book in PDF, Epub and Kindle

Based on Bahl and Bhartia's popular 1980 classic, Microstrip Antennas, this all new book provides the detail antenna engineers and designers need to design any type of microstrip antenna. After addressing essential microchip antenna theory, the authors highlight current design and engineering practices, emphasizing the most pressing issues in this area, including broadbanding, circular polarization, and active microstrip antennas in particular. Special design challenges, ranging from dual polarization, high bandwidth, and surface wave mitigation, to choosing the proper substrate, and shaping an antenna to achieve desired results are all covered.

Field Computation by Moment Methods

Field Computation by Moment Methods
Author: Roger F. Harrington
Publsiher: Wiley-IEEE Press
Total Pages: 240
Release: 1993-05-05
Genre: Technology & Engineering
ISBN: 0780310144

Download Field Computation by Moment Methods Book in PDF, Epub and Kindle

"An IEEE reprinting of this classic 1968 edition, FIELD COMPUTATION BY MOMENT METHODS is the first book to explore the computation of electromagnetic fields by the most popular method for the numerical solution to electromagnetic field problems. It presents a unified approach to moment methods by employing the concepts of linear spaces and functional analysis. Written especially for those who have a minimal amount of experience in electromagnetic theory, this book illustrates theoretical and mathematical concepts to prepare all readers with the skills they need to apply the method of moments to new, engineering-related problems. Written especially for those who have a minimal amount of experience in electromagnetic theory, theoretical and mathematical concepts are illustrated by examples that prepare all readers with the skills they need to apply the method of moments to new, engineering-related problems."

Electromagnetic Field Computation by Network Methods

Electromagnetic Field Computation by Network Methods
Author: Leopold B. Felsen,Mauro Mongiardo,Peter Russer
Publsiher: Springer Science & Business Media
Total Pages: 219
Release: 2009-03-05
Genre: Technology & Engineering
ISBN: 9783540939467

Download Electromagnetic Field Computation by Network Methods Book in PDF, Epub and Kindle

In this monograph, the authors propose a systematic and rigorous treatment of electromagnetic field representations in complex structures. The architecture suggested in this book accommodates use of different numerical methods as well as alternative Green's function representations in each of the subdomains resulting from a partitioning of the overall problem. The subdomains are regions of space where electromagnetic energy is stored and are described in terms of equivalent circuit representations based either on lumped element circuits or on transmission lines. Connection networks connect the subcircuits representing the subdomains. The connection networks are lossless, don't store energy and represent the overall problem topology. This is similar to what is done in circuit theory and permits a phrasing of the solution of EM field problems in complex structures by Network-oriented methods.

The Method of Moments in Electromagnetics

The Method of Moments in Electromagnetics
Author: Walton C. Gibson
Publsiher: CRC Press
Total Pages: 510
Release: 2021-09-06
Genre: Mathematics
ISBN: 9781000412482

Download The Method of Moments in Electromagnetics Book in PDF, Epub and Kindle

The Method of Moments in Electromagnetics, Third Edition details the numerical solution of electromagnetic integral equations via the Method of Moments (MoM). Previous editions focused on the solution of radiation and scattering problems involving conducting, dielectric, and composite objects. This new edition adds a significant amount of material on new, state-of-the art compressive techniques. Included are new chapters on the Adaptive Cross Approximation (ACA) and Multi-Level Adaptive Cross Approximation (MLACA), advanced algorithms that permit a direct solution of the MoM linear system via LU decomposition in compressed form. Significant attention is paid to parallel software implementation of these methods on traditional central processing units (CPUs) as well as new, high performance graphics processing units (GPUs). Existing material on the Fast Multipole Method (FMM) and Multi-Level Fast Multipole Algorithm (MLFMA) is also updated, blending in elements of the ACA algorithm to further reduce their memory demands. The Method of Moments in Electromagnetics is intended for students, researchers, and industry experts working in the area of computational electromagnetics (CEM) and the MoM. Providing a bridge between theory and software implementation, the book incorporates significant background material, while presenting practical, nuts-and-bolts implementation details. It first derives a generalized set of surface integral equations used to treat electromagnetic radiation and scattering problems, for objects comprising conducting and dielectric regions. Subsequent chapters apply these integral equations for progressively more difficult problems such as thin wires, bodies of revolution, and two- and three-dimensional bodies. Radiation and scattering problems of many different types are considered, with numerical results compared against analytical theory as well as measurements.

Theory and Computation of Electromagnetic Fields

Theory and Computation of Electromagnetic Fields
Author: Jian-Ming Jin
Publsiher: John Wiley & Sons
Total Pages: 744
Release: 2015-08-26
Genre: Science
ISBN: 9781119108092

Download Theory and Computation of Electromagnetic Fields Book in PDF, Epub and Kindle

Reviews the fundamental concepts behind the theory and computation of electromagnetic fields The book is divided in two parts. The first part covers both fundamental theories (such as vector analysis, Maxwell’s equations, boundary condition, and transmission line theory) and advanced topics (such as wave transformation, addition theorems, and fields in layered media) in order to benefit students at all levels. The second part of the book covers the major computational methods for numerical analysis of electromagnetic fields for engineering applications. These methods include the three fundamental approaches for numerical analysis of electromagnetic fields: the finite difference method (the finite difference time-domain method in particular), the finite element method, and the integral equation-based moment method. The second part also examines fast algorithms for solving integral equations and hybrid techniques that combine different numerical methods to seek more efficient solutions of complicated electromagnetic problems. Theory and Computation of Electromagnetic Fields, Second Edition: Provides the foundation necessary for graduate students to learn and understand more advanced topics Discusses electromagnetic analysis in rectangular, cylindrical and spherical coordinates Covers computational electromagnetics in both frequency and time domains Includes new and updated homework problems and examples Theory and Computation of Electromagnetic Fields, Second Edition is written for advanced undergraduate and graduate level electrical engineering students. This book can also be used as a reference for professional engineers interested in learning about analysis and computation skills.

The Method of Moments in Electromagnetics Second Edition

The Method of Moments in Electromagnetics  Second Edition
Author: Walton C. Gibson
Publsiher: CRC Press
Total Pages: 451
Release: 2014-07-10
Genre: Technology & Engineering
ISBN: 9781482235791

Download The Method of Moments in Electromagnetics Second Edition Book in PDF, Epub and Kindle

Now Covers Dielectric Materials in Practical Electromagnetic Devices The Method of Moments in Electromagnetics, Second Edition explains the solution of electromagnetic integral equations via the method of moments (MOM). While the first edition exclusively focused on integral equations for conducting problems, this edition extends the integral equation framework to treat objects having conducting as well as dielectric parts. New to the Second Edition Expanded treatment of coupled surface integral equations for conducting and composite conducting/dielectric objects, including objects having multiple dielectric regions with interfaces and junctions Updated topics to reflect current technology More material on the calculation of near fields Reformatted equations and improved figures Providing a bridge between theory and software implementation, the book incorporates sufficient background material and offers nuts-and-bolts implementation details. It first derives a generalized set of surface integral equations that can be used to treat problems with conducting and dielectric regions. Subsequent chapters solve these integral equations for progressively more difficult problems involving thin wires, bodies of revolution, and two- and three-dimensional bodies. After reading this book, students and researchers will be well equipped to understand more advanced MOM topics.