Flashback Mechanisms in Lean Premixed Gas Turbine Combustion

Flashback Mechanisms in Lean Premixed Gas Turbine Combustion
Author: Ali Cemal Benim,Khawar Jamil Syed
Publsiher: Academic Press
Total Pages: 134
Release: 2014-12-01
Genre: Technology & Engineering
ISBN: 9780128008263

Download Flashback Mechanisms in Lean Premixed Gas Turbine Combustion Book in PDF, Epub and Kindle

Blending fuels with hydrogen offers the potential to reduce NOx and CO2 emissions in gas turbines, but doing so introduces potential new problems such as flashback. Flashback can lead to thermal overload and destruction of hardware in the turbine engine, with potentially expensive consequences. The little research on flashback that is available is fragmented. Flashback Mechanisms in Lean Premixed Gas Turbine Combustion by Ali Cemal Benim will address not only the overall issue of the flashback phenomenon, but also the issue of fragmented and incomplete research. Presents a coherent review of flame flashback (a classic problem in premixed combustion) and its connection with the growing trend of popularity of more-efficient hydrogen-blend fuels Begins with a brief review of industrial gas turbine combustion technology Covers current environmental and economic motivations for replacing natural gas with hydrogen-blend fuels

Lean Combustion

Lean Combustion
Author: Derek Dunn-Rankin,Peter Therkelsen
Publsiher: Academic Press
Total Pages: 280
Release: 2016-07-01
Genre: Technology & Engineering
ISBN: 9780128005774

Download Lean Combustion Book in PDF, Epub and Kindle

Lean Combustion: Technology and Control, Second Edition outlines and explains the latest advances in lean combustion technology and systems. Combustion under sufficiently fuel-lean conditions can have the desirable attributes of high efficiency and low emissions. The book offers readers both the fundamentals and latest developments in how lean burn (broadly defined) can increase fuel economy and decrease emissions, while still achieving desired power output and performance. This volume brings together research and design of lean combustion systems across the technology spectrum in order to explore the state-of-the-art in lean combustion. Readers will learn about advances in the understanding of ultra-lean fuel mixtures and how new types of burners and approaches to managing heat flow can reduce problems often found with lean combustion (such as slow, difficult ignition and frequent flame extinction). This book offers abundant references and examples of real-world applications. New to this edition are significantly revised chapters on IC engines and stability/oscillations, and new case studies and examples. Written by a team of experts, this contributed reference book aims to teach its reader to maximize efficiency and minimize both economic and environmental costs. Presents a comprehensive collection of lean burn technology across potential applications, allowing readers to compare and contrast similarities and differences Provides an extensive update on IC engines including compression ignition (diesel), spark ignition, and homogeneous charge compression ignition (HCCI) Includes an extensive revision to the Stability/Oscillations chapter Includes use of alternative fuels such as biogas and hydrogen for relevant technologies Covers new developments in lean combustion using high levels of pre-heat and heat recirculating burners, as well as the active control of lean combustion instabilities

Stabilization and Dynamic of Premixed Swirling Flames

Stabilization and Dynamic of Premixed Swirling Flames
Author: Paul Palies
Publsiher: Academic Press
Total Pages: 400
Release: 2020-07-03
Genre: Technology & Engineering
ISBN: 9780128199978

Download Stabilization and Dynamic of Premixed Swirling Flames Book in PDF, Epub and Kindle

Stabilization and Dynamic of Premixed Swirling Flames: Prevaporized, Stratified, Partially, and Fully Premixed Regimes focuses on swirling flames in various premixed modes (stratified, partially, fully, prevaporized) for the combustor, and development and design of current and future swirl-stabilized combustion systems. This includes predicting capabilities, modeling of turbulent combustion, liquid fuel modeling, and a complete overview of stabilization of these flames in aeroengines. The book also discusses the effects of the operating envelope on upstream fresh gases and the subsequent impact of flame speed, combustion, and mixing, the theoretical framework for flame stabilization, and fully lean premixed injector design. Specific attention is paid to ground gas turbine applications, and a comprehensive review of stabilization mechanisms for premixed, partially-premixed, and stratified premixed flames. The last chapter covers the design of a fully premixed injector for future jet engine applications. Features a complete view of the challenges at the intersection of swirling flame combustors, their requirements, and the physics of fluids at work Addresses the challenges of turbulent combustion modeling with numerical simulations Includes the presentation of the very latest numerical results and analyses of flashback, lean blowout, and combustion instabilities Covers the design of a fully premixed injector for future jet engine applications

Modeling and Simulation of Turbulent Combustion

Modeling and Simulation of Turbulent Combustion
Author: Santanu De,Avinash Kumar Agarwal,Swetaprovo Chaudhuri,Swarnendu Sen
Publsiher: Springer
Total Pages: 661
Release: 2017-12-12
Genre: Science
ISBN: 9789811074103

Download Modeling and Simulation of Turbulent Combustion Book in PDF, Epub and Kindle

This book presents a comprehensive review of state-of-the-art models for turbulent combustion, with special emphasis on the theory, development and applications of combustion models in practical combustion systems. It simplifies the complex multi-scale and nonlinear interaction between chemistry and turbulence to allow a broader audience to understand the modeling and numerical simulations of turbulent combustion, which remains at the forefront of research due to its industrial relevance. Further, the book provides a holistic view by covering a diverse range of basic and advanced topics—from the fundamentals of turbulence–chemistry interactions, role of high-performance computing in combustion simulations, and optimization and reduction techniques for chemical kinetics, to state-of-the-art modeling strategies for turbulent premixed and nonpremixed combustion and their applications in engineering contexts.

Unsteady Combustor Physics

Unsteady Combustor Physics
Author: Tim C. Lieuwen
Publsiher: Cambridge University Press
Total Pages: 135
Release: 2012-08-27
Genre: Technology & Engineering
ISBN: 9781139576833

Download Unsteady Combustor Physics Book in PDF, Epub and Kindle

Developing clean, sustainable energy systems is a pre-eminent issue of our time. Most projections indicate that combustion-based energy conversion systems will continue to be the predominant approach for the majority of our energy usage. Unsteady combustor issues present the key challenge associated with the development of clean, high-efficiency combustion systems such as those used for power generation, heating or propulsion applications. This comprehensive study is unique, treating the subject in a systematic manner. Although this book focuses on unsteady combusting flows, it places particular emphasis on the system dynamics that occur at the intersection of the combustion, fluid mechanics and acoustic disciplines. Individuals with a background in fluid mechanics and combustion will find this book to be an incomparable study that synthesises these fields into a coherent understanding of the intrinsically unsteady processes in combustors.

Recurrence Plots and Their Quantifications Expanding Horizons

Recurrence Plots and Their Quantifications  Expanding Horizons
Author: Charles L. Webber, Jr.,Cornel Ioana,Norbert Marwan
Publsiher: Springer
Total Pages: 380
Release: 2016-05-18
Genre: Science
ISBN: 9783319299228

Download Recurrence Plots and Their Quantifications Expanding Horizons Book in PDF, Epub and Kindle

The chapters in this book originate from the research work and contributions presented at the Sixth International Symposium on Recurrence Plots held in Grenoble, France in June 2015. Scientists from numerous disciplines gathered to exchange knowledge on recent applications and developments in recurrence plots and recurrence quantification analysis. This meeting was remarkable because of the obvious expansion of recurrence strategies (theory) and applications (practice) into ever-broadening fields of science. It discusses real-world systems from various fields, including mathematics, strange attractors, applied physics, physiology, medicine, environmental and earth sciences, as well as psychology and linguistics. Even readers not actively researching any of these particular systems will benefit from discovering how other scientists are finding practical non-linear solutions to specific problems.The book is of interest to an interdisciplinary audience of recurrence plot users and researchers interested in time series analysis in particular, and in complex systems in general.

Thermoacoustic Combustion Instability Control

Thermoacoustic Combustion Instability Control
Author: Dan Zhao
Publsiher: Academic Press
Total Pages: 1145
Release: 2023-02-13
Genre: Technology & Engineering
ISBN: 9780323899185

Download Thermoacoustic Combustion Instability Control Book in PDF, Epub and Kindle

Thermoacoustic Combustion Instability Control: Engineering Applications and Computer Codes provides a unique opportunity for researchers, students and engineers to access recent developments from technical, theoretical and engineering perspectives. The book is a compendium of the most recent advances in theoretical and computational modeling and the thermoacoustic instability phenomena associated with multi-dimensional computing methods and recent developments in signal-processing techniques. These include, but are not restricted to a real-time observer, proper orthogonal decomposition (POD), dynamic mode decomposition, Galerkin expansion, empirical mode decomposition, the Lattice Boltzmann method, and associated numerical and analytical approaches. The fundamental physics of thermoacoustic instability occurs in both macro- and micro-scale combustors. Practical methods for alleviating common problems are presented in the book with an analytical approach to arm readers with the tools they need to apply in their own industrial or research setting. Readers will benefit from practicing the worked examples and the training provided on computer coding for combustion technology to achieve useful results and simulations that advance their knowledge and research. Focuses on applications of theoretical and numerical modes with computer codes relevant to combustion technology Includes the most recent modeling and analytical developments motivated by empirical experimental observations in a highly visual way Provides self-contained chapters that include a comprehensive, introductory section that ensures any readers new to this topic are equipped with required technical terms

Energy for Propulsion

Energy for Propulsion
Author: Akshai K. Runchal,Ashwani K. Gupta,Abhijit Kushari,Ashoke De,Suresh K. Aggarwal
Publsiher: Springer
Total Pages: 494
Release: 2018-07-06
Genre: Technology & Engineering
ISBN: 9789811074738

Download Energy for Propulsion Book in PDF, Epub and Kindle

This research book provides state-of-the-art advances in several areas of energy generation from, and environmental impact of, fuels and biofuels. It also presents novel developments in the areas of biofuels and products from various feedstock materials along with thermal management, emission control and environmental issues. Availability of clean and sustainable energy is of paramount importance in all applications of energy, power, mobility and propulsion. This book is written by internationally renowned experts from around the globe. They provide the latest innovations in cleaner energy utilization for a wide range of devices. The energy and environment sustainability requires a multipronged approach involving development and utilization of new and renewable fuels, design of fuel-flexible combustion systems and novel and environmentally friendly technologies for improved fuel use. This book serves as a good reference for practicing engineers, educators and research professionals.