Flight Test Identification and Simulation of a UH 60A Helicopter and Slung Load

Flight Test Identification and Simulation of a UH 60A Helicopter and Slung Load
Author: Anonim
Publsiher: Unknown
Total Pages: 98
Release: 2001
Genre: Electronic Book
ISBN: NASA:31769000634223

Download Flight Test Identification and Simulation of a UH 60A Helicopter and Slung Load Book in PDF, Epub and Kindle

Helicopter slung-load operations are common in both military and civil contexts. Helicopters and loads are often qualified for these operations by means of flight tests, which can be expensive and time consuming. There is significant potential to reduce such costs both through revisions in flight-test methods and by using validated simulation models. To these ends, flight tests were conducted at Moffett Field to demonstrate the identification of key dynamic parameters during flight tests (aircraft stability margins and handling-qualities parameters, and load pendulum stability), and to accumulate a data base for simulation development and validation. The test aircraft was a UH-60A Black Hawk, and the primary test load was an instrumented 8- by 6- by 6-ft cargo container. Tests were focused on the lateral and longitudinal axes, which are the axes most affected by the load pendulum modes in the frequency range of interest for handling qualities; tests were conducted at airspeeds from hover to 80 knots. Using telemetered data, the dynamic parameters were evaluated in near real time after each test airspeed and before clearing the aircraft to the next test point. These computations were completed in under 1 min. A simulation model was implemented by integrating an advanced model of the UH-60A aerodynamics, dynamic equations for the two-body slung-load system, and load static aerodynamics obtained from wind-tunnel measurements. Comparisons with flight data for the helicopter alone and with a slung load showed good overall agreement for all parameters and test points; however, unmodeled secondary dynamic losses around 2 Hz were found in the helicopter model and they resulted in conservative stability margin estimates.

Flight Testing and Real Time System Identification Analysis of a UH 60A Black Hawk Helicopter with an Instrumented External Sling Load

Flight Testing and Real Time System Identification Analysis of a UH 60A Black Hawk Helicopter with an Instrumented External Sling Load
Author: Allen H. McCoy
Publsiher: Unknown
Total Pages: 96
Release: 1997-12
Genre: Science
ISBN: NASA:31769000700032

Download Flight Testing and Real Time System Identification Analysis of a UH 60A Black Hawk Helicopter with an Instrumented External Sling Load Book in PDF, Epub and Kindle

Historically, helicopter and load combinations have been qualified through flight testing, requiring considerable time and cost. With advancements in simulation and flight test techniques, there is potential to substantially reduce costs and increase the safety of helicopter sling load certification. Validated simulation tools make possible accurate prediction of operational flight characteristics before initial flight tests. Real time analysis of test data improves the safety and efficiency of the testing programs. To advance these concepts, the US Army and NASA, in cooperation with the Israeli Air Force and Technion, under a Memorandum of Agreement, seek to develop and validate a numerical model of the UH-60 with sling load and demonstrate a method of near real time flight test analysis. This thesis presents results from flight tests of a US Army Black Hawk helicopter with various external loads. Tests were conducted as the US first phase of this MOA task. The primary load was a container express box (CONEX), which contained a compact instrumentation package. The flights covered the airspeed range from hover to 70 knots. Primary maneuvers were pitch and roll frequency sweeps, steps, and doublets. Results of the test determined the effect of the suspended load on both the aircraft's handling qualities and it's control system's stability margins. Included were calculations of the stability characteristics of the load's pendular motion. Utilizing CIFER software, a method for near-real time system identification was also demonstrated during the flight test program.

Flight Time Identification of a Uh 60a Helicopter and Slung Load

Flight Time Identification of a Uh 60a Helicopter and Slung Load
Author: National Aeronautics and Space Administration (NASA)
Publsiher: Createspace Independent Publishing Platform
Total Pages: 26
Release: 2018-07-03
Genre: Electronic Book
ISBN: 1722242027

Download Flight Time Identification of a Uh 60a Helicopter and Slung Load Book in PDF, Epub and Kindle

This paper describes a flight test demonstration of a system for identification of the stability and handling qualities parameters of a helicopter-slung load configuration simultaneously with flight testing, and the results obtained.Tests were conducted with a UH-60A Black Hawk at speeds from hover to 80 kts. The principal test load was an instrumented 8 x 6 x 6 ft cargo container. The identification used frequency domain analysis in the frequency range to 2 Hz, and focussed on the longitudinal and lateral control axes since these are the axes most affected by the load pendulum modes in the frequency range of interest for handling qualities. Results were computed for stability margins, handling qualities parameters and load pendulum stability. The computations took an average of 4 minutes before clearing the aircraft to the next test point. Important reductions in handling qualities were computed in some cases, depending, on control axis and load-slung combination. A database, including load dynamics measurements, was accumulated for subsequent simulation development and validation. Cicolani, Luigi S. and McCoy, Allen H. and Tischler, Mark B. and Tucker, George E. and Gatenio, Pinhas and Marmar, Dani Ames Research Center RTOP 581-30-22...

Flight Time Identification of a UH 60A Helicopter and Slung Load

Flight Time Identification of a UH 60A Helicopter and Slung Load
Author: Anonim
Publsiher: Unknown
Total Pages: 30
Release: 1998
Genre: Electronic Book
ISBN: NASA:31769000626229

Download Flight Time Identification of a UH 60A Helicopter and Slung Load Book in PDF, Epub and Kindle

Simulation Validation and Flight Prediction of UH 60A Black Hawk Helicopter Slung Load Characteristics

Simulation Validation and Flight Prediction of UH 60A Black Hawk Helicopter Slung Load Characteristics
Author: Peter H. Tyson,Naval Postgraduate School (U.S.)
Publsiher: Unknown
Total Pages: 303
Release: 1999-03-01
Genre: Electronic Book
ISBN: 1423545230

Download Simulation Validation and Flight Prediction of UH 60A Black Hawk Helicopter Slung Load Characteristics Book in PDF, Epub and Kindle

Helicopter/slung load systems are two body systems in which the slung load adds its rigid body dynamics, aerodynamics, and sling stretching dynamics to the helicopter. The slung load can degrade helicopter handling qualities and reduce the flight envelope of the helicopter. Confirmation of system stability parameters and envelope is desired, but flight test evaluation is time consuming and costly. A simulation model validated for handling quality assessments would significantly reduce resources expended in flight testing while increasing efficiency, productivity, and safety by aiding researchers, designers, and pilots to understand factors affecting helicopter-slung load handling qualities. This thesis describes a comprehensive dynamics and aerodynamics model for slung load simulation, obtained by integrating the NASA Ames Gen Hel UH-60A simulation with slung load equations of motion. Frequency domain analysis is used to compare simulation to flight test frequency responses and key system stability parameters. Results are given for no load, a 4K lb Block, and a 4K lb CONEX load. Handling quality parameters, stability margins, and load pendulum motion roots for cases without load aerodynamics and with static wind tunnel data were compared. Results illustrated state-of-the-art simulation modeling of helicopter/slung load dynamics and its accuracy in predicting key dynamic parameters of interest.

Flight Testing and Real Time System Identification Analysis of a Uh 60a Black Hawk Helicopter with an Instrumented External Sling Load

Flight Testing and Real Time System Identification Analysis of a Uh 60a Black Hawk Helicopter with an Instrumented External Sling Load
Author: National Aeronautics and Space Administration (NASA)
Publsiher: Createspace Independent Publishing Platform
Total Pages: 92
Release: 2018-07-06
Genre: Electronic Book
ISBN: 1722400943

Download Flight Testing and Real Time System Identification Analysis of a Uh 60a Black Hawk Helicopter with an Instrumented External Sling Load Book in PDF, Epub and Kindle

Helicopter external air transportation plays an important role in today's world. For both military and civilian helicopters, external sling load operations offer an efficient and expedient method of handling heavy, oversized cargo. With the ability to reach areas otherwise inaccessible by ground transportation, helicopter external load operations are conducted in industries such as logging, construction, and fire fighting, as well as in support of military tactical transport missions. Historically, helicopter and load combinations have been qualified through flight testing, requiring considerable time and cost. With advancements in simulation and flight test techniques there is potential to substantially reduce costs and increase the safety of helicopter sling load certification. Validated simulation tools make possible accurate prediction of operational flight characteristics before initial flight tests. Real time analysis of test data improves the safety and efficiency of the testing programs. To advance these concepts, the U.S. Army and NASA, in cooperation with the Israeli Air Force and Technion, under a Memorandum of Agreement, seek to develop and validate a numerical model of the UH-60 with sling load and demonstrate a method of near real time flight test analysis. This thesis presents results from flight tests of a U.S. Army Black Hawk helicopter with various external loads. Tests were conducted as the U.S. first phase of this MOA task. The primary load was a container express box (CONEX) which contained a compact instrumentation package. The flights covered the airspeed range from hover to 70 knots. Primary maneuvers were pitch and roll frequency sweeps, steps, and doublets. Results of the test determined the effect of the suspended load on both the aircraft's handling qualities and its control system's stability margins. Included were calculations of the stability characteristics of the load's pendular motion. Utilizing CIFER(R) software, a method for near-...

Journal of the American Helicopter Society

Journal of the American Helicopter Society
Author: American Helicopter Society
Publsiher: Unknown
Total Pages: 324
Release: 2001
Genre: Helicopters
ISBN: UVA:X006157666

Download Journal of the American Helicopter Society Book in PDF, Epub and Kindle

Monthly Catalog of United States Government Publications

Monthly Catalog of United States Government Publications
Author: Anonim
Publsiher: Unknown
Total Pages: 1152
Release: 1999
Genre: Government publications
ISBN: MINN:31951P007576207

Download Monthly Catalog of United States Government Publications Book in PDF, Epub and Kindle