Fundamentals of Semiconductors

Fundamentals of Semiconductors
Author: Peter YU,Manuel Cardona
Publsiher: Springer Science & Business Media
Total Pages: 645
Release: 2007-05-08
Genre: Technology & Engineering
ISBN: 9783540264750

Download Fundamentals of Semiconductors Book in PDF, Epub and Kindle

Excellent bridge between general solid-state physics textbook and research articles packed with providing detailed explanations of the electronic, vibrational, transport, and optical properties of semiconductors "The most striking feature of the book is its modern outlook ... provides a wonderful foundation. The most wonderful feature is its efficient style of exposition ... an excellent book." Physics Today "Presents the theoretical derivations carefully and in detail and gives thorough discussions of the experimental results it presents. This makes it an excellent textbook both for learners and for more experienced researchers wishing to check facts. I have enjoyed reading it and strongly recommend it as a text for anyone working with semiconductors ... I know of no better text ... I am sure most semiconductor physicists will find this book useful and I recommend it to them." Contemporary Physics Offers much new material: an extensive appendix about the important and by now well-established, deep center known as the DX center, additional problems and the solutions to over fifty of the problems at the end of the various chapters.

Fundamentals of Semiconductors

Fundamentals of Semiconductors
Author: Peter YU,Manuel Cardona
Publsiher: Springer Science & Business Media
Total Pages: 651
Release: 2005-03-23
Genre: Technology & Engineering
ISBN: 9783540254706

Download Fundamentals of Semiconductors Book in PDF, Epub and Kindle

Excellent bridge between general solid-state physics textbook and research articles packed with providing detailed explanations of the electronic, vibrational, transport, and optical properties of semiconductors "The most striking feature of the book is its modern outlook ... provides a wonderful foundation. The most wonderful feature is its efficient style of exposition ... an excellent book." Physics Today "Presents the theoretical derivations carefully and in detail and gives thorough discussions of the experimental results it presents. This makes it an excellent textbook both for learners and for more experienced researchers wishing to check facts. I have enjoyed reading it and strongly recommend it as a text for anyone working with semiconductors ... I know of no better text ... I am sure most semiconductor physicists will find this book useful and I recommend it to them." Contemporary Physics Offers much new material: an extensive appendix about the important and by now well-established, deep center known as the DX center, additional problems and the solutions to over fifty of the problems at the end of the various chapters.

Fundamentals of Semiconductors

Fundamentals of Semiconductors
Author: Peter YU,Manuel Cardona
Publsiher: Springer Science & Business Media
Total Pages: 778
Release: 2010-04-07
Genre: Technology & Engineering
ISBN: 9783642007101

Download Fundamentals of Semiconductors Book in PDF, Epub and Kindle

Excellent bridge between general solid-state physics textbook and research articles packed with providing detailed explanations of the electronic, vibrational, transport, and optical properties of semiconductors "The most striking feature of the book is its modern outlook ... provides a wonderful foundation. The most wonderful feature is its efficient style of exposition ... an excellent book." Physics Today "Presents the theoretical derivations carefully and in detail and gives thorough discussions of the experimental results it presents. This makes it an excellent textbook both for learners and for more experienced researchers wishing to check facts. I have enjoyed reading it and strongly recommend it as a text for anyone working with semiconductors ... I know of no better text ... I am sure most semiconductor physicists will find this book useful and I recommend it to them." Contemporary Physics Offers much new material: an extensive appendix about the important and by now well-established, deep center known as the DX center, additional problems and the solutions to over fifty of the problems at the end of the various chapters.

III V Compound Semiconductors and Devices

III   V Compound Semiconductors and Devices
Author: Keh Yung Cheng
Publsiher: Springer Nature
Total Pages: 537
Release: 2020-11-08
Genre: Technology & Engineering
ISBN: 9783030519032

Download III V Compound Semiconductors and Devices Book in PDF, Epub and Kindle

This textbook gives a complete and fundamental introduction to the properties of III-V compound semiconductor devices, highlighting the theoretical and practical aspects of their device physics. Beginning with an introduction to the basics of semiconductor physics, it presents an overview of the physics and preparation of compound semiconductor materials, as well as a detailed look at the electrical and optical properties of compound semiconductor heterostructures. The book concludes with chapters dedicated to a number of heterostructure electronic and photonic devices, including the high-electron-mobility transistor, the heterojunction bipolar transistor, lasers, unipolar photonic devices, and integrated optoelectronic devices. Featuring chapter-end problems, suggested references for further reading, as well as clear, didactic schematics accompanied by six information-rich appendices, this textbook is ideal for graduate students in the areas of semiconductor physics or electrical engineering. In addition, up-to-date results from published research make this textbook especially well-suited as a self-study and reference guide for engineers and researchers in related industries.

Fundamentals of Semiconductor Manufacturing and Process Control

Fundamentals of Semiconductor Manufacturing and Process Control
Author: Gary S. May,Costas J. Spanos
Publsiher: John Wiley & Sons
Total Pages: 428
Release: 2006-05-26
Genre: Technology & Engineering
ISBN: 9780471790273

Download Fundamentals of Semiconductor Manufacturing and Process Control Book in PDF, Epub and Kindle

A practical guide to semiconductor manufacturing from processcontrol to yield modeling and experimental design Fundamentals of Semiconductor Manufacturing and Process Controlcovers all issues involved in manufacturing microelectronic devicesand circuits, including fabrication sequences, process control,experimental design, process modeling, yield modeling, and CIM/CAMsystems. Readers are introduced to both the theory and practice ofall basic manufacturing concepts. Following an overview of manufacturing and technology, the textexplores process monitoring methods, including those that focus onproduct wafers and those that focus on the equipment used toproduce wafers. Next, the text sets forth some fundamentals ofstatistics and yield modeling, which set the foundation for adetailed discussion of how statistical process control is used toanalyze quality and improve yields. The discussion of statistical experimental design offers readers apowerful approach for systematically varying controllable processconditions and determining their impact on output parameters thatmeasure quality. The authors introduce process modeling concepts,including several advanced process control topics such asrun-by-run, supervisory control, and process and equipmentdiagnosis. Critical coverage includes the following: * Combines process control and semiconductor manufacturing * Unique treatment of system and software technology and managementof overall manufacturing systems * Chapters include case studies, sample problems, and suggestedexercises * Instructor support includes electronic copies of the figures andan instructor's manual Graduate-level students and industrial practitioners will benefitfrom the detailed exami?nation of how electronic materials andsupplies are converted into finished integrated circuits andelectronic products in a high-volume manufacturingenvironment. An Instructor's Manual presenting detailed solutions to all theproblems in the book is available from the Wiley editorialdepartment. An Instructor Support FTP site is also available.

Fundamentals of Power Semiconductor Devices

Fundamentals of Power Semiconductor Devices
Author: B. Jayant Baliga
Publsiher: Springer
Total Pages: 1086
Release: 2018-09-28
Genre: Technology & Engineering
ISBN: 9783319939889

Download Fundamentals of Power Semiconductor Devices Book in PDF, Epub and Kindle

Fundamentals of Power Semiconductor Devices provides an in-depth treatment of the physics of operation of power semiconductor devices that are commonly used by the power electronics industry. Analytical models for explaining the operation of all power semiconductor devices are shown. The treatment here focuses on silicon devices but includes the unique attributes and design requirements for emerging silicon carbide devices. The book will appeal to practicing engineers in the power semiconductor device community.

Fundamentals of Semiconductor Physics and Devices

Fundamentals of Semiconductor Physics and Devices
Author: Rolf Enderlein,Norman J Horing
Publsiher: World Scientific
Total Pages: 792
Release: 1997-02-27
Genre: Science
ISBN: 9789814499958

Download Fundamentals of Semiconductor Physics and Devices Book in PDF, Epub and Kindle

This book is an introduction to the principles of semiconductor physics, linking its scientific aspects with practical applications. It is addressed to both readers who wish to learn semiconductor physics and those seeking to understand semiconductor devices. It is particularly well suited for those who want to do both. Intended as a teaching vehicle, the book is written in an expository manner aimed at conveying a deep and coherent understanding of the field. It provides clear and complete derivations of the basic concepts of modern semiconductor physics. The mathematical arguments and physical interpretations are well balanced: they are presented in a measure designed to ensure the integrity of the delivery of the subject matter in a fully comprehensible form. Experimental procedures and measured data are included as well. The reader is generally not expected to have background in quantum mechanics and solid state physics beyond the most elementary level. Nonetheless, the presentation of this book is planned to bring the student to the point of research/design capability as a scientist or engineer. Moreover, it is sufficiently well endowed with detailed knowledge of the field, including recent developments bearing on submicron semiconductor structures, that the book also constitutes a valuable reference resource. In Chapter 1, basic features of the atomic structures, chemical nature and the macroscopic properties of semiconductors are discussed. The band structure of ideal semiconductor crystals is treated in Chapter 2, together with the underlying one-electron picture and other fundamental concepts. Chapter 2 also provides the requisite background of the tight binding method and the k.p-method, which are later used extensively. The electron states of shallow and deep centers, clean semiconductor surfaces, quantum wells and superlattices, as well as the effects of external electric and magnetic fields, are treated in Chapter 3. The one- or multi-band effective mass theory is used wherever this method is applicable. A summary of group theory for application in semiconductor physics is given in an Appendix. Chapter 4 deals with the statistical distribution of charge carriers over the band and localized states in thermodynamic equilibrium. Non-equilibrium processes in semiconductors are treated in Chapter 5. The physics of semiconductor junctions (pn-, hetero-, metal-, and insulator-) is developed in Chapter 6 under conditions of thermodynamic equilibrium, and in Chapter 7 under non-equilibrium conditions. On this basis, the most important electronic and opto-electronic semiconductor devices are treated, among them uni- and bi-polar transistors, photodetectors, solar cells, and injection lasers. A summary of group theory for applications in semiconductors is given in an Appendix. Contents:Characterization of SemiconductorsElectronic Structure of Ideal CrystalsElectronic Structure of Semiconductor Crystals with PerturbationsElectron System in Thermodynamic EquilibriumNon-Equilibrium Processes in SemiconductorsSemiconductor Junctions in Thermodynamic EquilibriumSemiconductor Junctions Under Non-Equilibrium Conditions Readership: Undergraduates, graduates and researchers in the fields of physics and engineering. keywords:Semiconductors;Transistor;Devices;Heterojunctions;Microstructures;Band-Structure;Luttinger-Kohn-Model;Kane-Model;Deep-Levels;Transport;Semiconductor Physics;Fundamental Physical Phenomena;General Backround;Characterization of Semiconductor;Electronic Structur of Semiconductors;Semiconductor Junctions the Thermodynamic Equilibrium;Semiconductor Junctions Under Non-Equilibrium Conductions; “… The reader who has only a first acquaintance with semiconductor physics will find that this book has fully detailed explanations of the fundamental physical phenomena, providing a good general background … A brilliant discussion of artifical atomic superstructures of nanometer length scale establishes a link to the most active field of semiconductor physics … In my opinion the book of R Enderlein and N J M Horing Fundamentals of Semiconductor Physics and Devices is a valuable contribution to the modern didactic literature on the physics of semiconductors. Morever, it is of considerable value as a reference for specialists as well.” J T Devreese Professor at the Physics Department University of Antwerpen, Belgium “In Fundamentals of Semiconductor Physics and Devices, R Enderiein and N J M Horing have provided a very extensive and detailed text on the physics underlying semiconductor devices. More so than any other current text, this book provides a greatly expanded discussion of modern tight-binding methods, helping the students to understand these aspects of electronic structure in clear, simple terms. In connection with this the authors offer a very detailed discussion of deep levels in semiconductors, which are so important to semiconducting properties. Also, in the discussion of transport properties, the book goes into much greater depth about nonlinear and nonequilibrium processes than is usual. It is quite a unique contribution, containing the basic physics which tends to be missing from device-oriented books, but going much further into the essentials needed for device development than any solid-state-physics text.” Walter A Harrison Professor of Applied Physics Stanford University, USA

The Physics of Semiconductors

The Physics of Semiconductors
Author: Marius Grundmann
Publsiher: Springer Nature
Total Pages: 905
Release: 2021-03-06
Genre: Technology & Engineering
ISBN: 9783030515690

Download The Physics of Semiconductors Book in PDF, Epub and Kindle

The 4th edition of this highly successful textbook features copious material for a complete upper-level undergraduate or graduate course, guiding readers to the point where they can choose a specialized topic and begin supervised research. The textbook provides an integrated approach beginning from the essential principles of solid-state and semiconductor physics to their use in various classic and modern semiconductor devices for applications in electronics and photonics. The text highlights many practical aspects of semiconductors: alloys, strain, heterostructures, nanostructures, amorphous semiconductors, and noise, which are essential aspects of modern semiconductor research but often omitted in other textbooks. This textbook also covers advanced topics, such as Bragg mirrors, resonators, polarized and magnetic semiconductors, nanowires, quantum dots, multi-junction solar cells, thin film transistors, and transparent conductive oxides. The 4th edition includes many updates and chapters on 2D materials and aspects of topology. The text derives explicit formulas for many results to facilitate a better understanding of the topics. Having evolved from a highly regarded two-semester course on the topic, The Physics of Semiconductors requires little or no prior knowledge of solid-state physics. More than 2100 references guide the reader to historic and current literature including original papers, review articles and topical books, providing a go-to point of reference for experienced researchers as well.