Integrated Earthquake Simulation

Integrated Earthquake Simulation
Author: M. Hori,T. Ichimura,L. Maddegedara
Publsiher: CRC Press
Total Pages: 189
Release: 2022-09-26
Genre: Technology & Engineering
ISBN: 9781000615722

Download Integrated Earthquake Simulation Book in PDF, Epub and Kindle

Integrated earthquake simulation (IES) is a new method for evaluating earthquake hazards and disasters induced in cities and urban areas. It utilises a sequence of numerical simulations of such aspects as earthquake wave propagation, ground motion amplification, structural seismic response, and mass evacuation. This book covers the basics of numerical analysis methods of solving wave equations, analyzing structural responses, and developing agent models for mass evaluation, which are implemented in IES. IES makes use of Monte-Carlo simulation, which takes account of the effects of uncertainties related to earthquake scenarios and the modeling of structures both above and below ground, and facilitates a better estimate of overall earthquake and disaster hazard. It also presents the recent achievement of enhancing IES with high-performance computing capability that can make use of automated models which employ various numerical analysis methods. Detailed examples of IES for the Tokyo Metropolis Earthquake and the Nankai Trough Earthquake are given, which use large scale analysis models of actual cities and urban areas.

Introduction to Computational Earthquake Engineering

Introduction to Computational Earthquake Engineering
Author: Muneo Hori
Publsiher: Imperial College Press
Total Pages: 344
Release: 2006
Genre: Science
ISBN: 9781860946202

Download Introduction to Computational Earthquake Engineering Book in PDF, Epub and Kindle

This book introduces new research topics in earthquake engineering through the application of computational mechanics and computer science. The topics covered discuss the evaluation of earthquake hazards such as strong ground motion and faulting through applying advanced numerical analysis methods, useful for estimating earthquake disasters. These methods, based on recent progress in solid continuum mechanics and computational mechanics, are summarized comprehensively for graduate students and researchers in earthquake engineering. The coverage includes stochastic modeling as well as several advanced computational earthquake engineering topics. Contents: Preliminaries: Solid Continuum Mechanics; Finite Element Method; Stochastic Modeling; Strong Ground Motion: The Wave Equation for Solids; Analysis of Strong Ground Motion; Simulation of Strong Ground Motion; Faulting: Elasto-Plasticity and Fracture Mechanics; Analysis of Faulting; Simulation of Faulting; BEM Simulation of Faulting; Advanced Topics: Integrated Earthquake Simulation; Unified Visualization of Earthquake Simulation; Standardization of Earthquake Resistant Design; Appendices: Earthquake Mechanisms; Analytical Mechanics; Numerical Techniques of Solving Wave Equation; Unified Modeling Language. Key Features Includes a detailed treatment of modeling of uncertain ground structures, such as stochastic modeling Explains several key numerical algorithms and techniques for solving large-scale, non-linear and dynamic problems Presents applications of methods for simulating actual strong ground motion and faulting Readership: Graduate students and researchers in earthquake engineering; researchers in computational mechanics and computer science.

Integrated Earthquake Simulation

Integrated Earthquake Simulation
Author: M. Hori,T. Ichimura,L. Maddegedara
Publsiher: CRC Press
Total Pages: 192
Release: 2022-09-26
Genre: Technology & Engineering
ISBN: 9781000615777

Download Integrated Earthquake Simulation Book in PDF, Epub and Kindle

Integrated earthquake simulation (IES) is a new method for evaluating earthquake hazards and disasters induced in cities and urban areas. It utilises a sequence of numerical simulations of such aspects as earthquake wave propagation, ground motion amplification, structural seismic response, and mass evacuation. This book covers the basics of numerical analysis methods of solving wave equations, analyzing structural responses, and developing agent models for mass evaluation, which are implemented in IES. IES makes use of Monte-Carlo simulation, which takes account of the effects of uncertainties related to earthquake scenarios and the modeling of structures both above and below ground, and facilitates a better estimate of overall earthquake and disaster hazard. It also presents the recent achievement of enhancing IES with high-performance computing capability that can make use of automated models which employ various numerical analysis methods. Detailed examples of IES for the Tokyo Metropolis Earthquake and the Nankai Trough Earthquake are given, which use large scale analysis models of actual cities and urban areas.

Introduction to Computational Earthquake Engineering

Introduction to Computational Earthquake Engineering
Author: Muneo Hori
Publsiher: World Scientific
Total Pages: 438
Release: 2011
Genre: Computers
ISBN: 9781848163997

Download Introduction to Computational Earthquake Engineering Book in PDF, Epub and Kindle

Introduction to Computational Earthquake Engineering covers solid continuum mechanics, finite element method and stochastic modeling comprehensively, with the second and third chapters explaining the numerical simulation of strong ground motion and faulting, respectively. Stochastic modeling is used for uncertain underground structures, and advanced analytical methods for linear and non-linear stochastic models are presented. The verification of these methods by comparing the simulation results with observed data is then presented, and examples of numerical simulations which apply these methods to practical problems are generously provided. Furthermore three advanced topics of computational earthquake engineering are covered, detailing examples of applying computational science technology to earthquake engineering problems.

Earthquake Disaster Simulation of Civil Infrastructures

Earthquake Disaster Simulation of Civil Infrastructures
Author: Xinzheng Lu,Hong Guan
Publsiher: Springer
Total Pages: 440
Release: 2017-01-18
Genre: Technology & Engineering
ISBN: 9789811030871

Download Earthquake Disaster Simulation of Civil Infrastructures Book in PDF, Epub and Kindle

Based on more than 12 years of systematic investigation on earthquake disaster simulation of civil infrastructures, this book covers the major research outcomes including a number of novel computational models, high performance computing methods and realistic visualization techniques for tall buildings and urban areas, with particular emphasize on collapse prevention and mitigation in extreme earthquakes, earthquake loss evaluation and seismic resilience. Typical engineering applications to several tallest buildings in the world (e.g., the 632 m tall Shanghai Tower and the 528 m tall Z15 Tower) and selected large cities in China (the Beijing Central Business District, Xi'an City, Taiyuan City and Tangshan City) are also introduced to demonstrate the advantages of the proposed computational models and techniques. The high-fidelity computational model developed in this book has proven to be the only feasible option to date for earthquake-induced collapse simulation of supertall buildings that are higher than 500 m. More importantly, the proposed collapse simulation technique has already been successfully used in the design of some real-world supertall buildings, with significant savings of tens of thousands of tons of concrete and steel, whilst achieving a better seismic performance and safety. The proposed novel solution for earthquake disaster simulation of urban areas using nonlinear multiple degree-of-freedom (MDOF) model and time-history analysis delivers several unique advantages: (1) true representation of the characteristic features of individual buildings and ground motions; (2) realistic visualization of earthquake scenarios, particularly dynamic shaking of buildings during earthquakes; (3) detailed prediction of seismic response and losses on each story of every building at any time period. The proposed earthquake disaster simulation technique has been successfully implemented in the seismic performance assessments and earthquake loss predictions of several central cities in China. The outcomes of the simulation as well as the feedback from the end users are encouraging, particularly for the government officials and/or administration department personnel with limited professional knowledge of earthquake engineering. The book offers readers a systematic solution to earthquake disaster simulation of civil infrastructures. The application outcomes demonstrate a promising future of the proposed advanced techniques. The book provides a long-awaited guide for academics and graduate students involving in earthquake engineering research and teaching activities. It can also be used by structural engineers for seismic design of supertall buildings.

Introduction to Computational Earthquake Engineering

Introduction to Computational Earthquake Engineering
Author: Muneo Hori
Publsiher: World Scientific Publishing Company
Total Pages: 342
Release: 2006-02-17
Genre: Science
ISBN: 9781911299196

Download Introduction to Computational Earthquake Engineering Book in PDF, Epub and Kindle

This book introduces new research topics in earthquake engineering through the application of computational mechanics and computer science. The topics covered discuss the evaluation of earthquake hazards such as strong ground motion and faulting through applying advanced numerical analysis methods, useful for estimating earthquake disasters. These methods, based on recent progress in solid continuum mechanics and computational mechanics, are summarized comprehensively for graduate students and researchers in earthquake engineering. The coverage includes stochastic modeling as well as several advanced computational earthquake engineering topics. Contents:Preliminaries:Solid Continuum MechanicsFinite Element MethodStochastic ModelingStrong Ground Motion:The Wave Equation for SolidsAnalysis of Strong Ground MotionSimulation of Strong Ground MotionFaulting:Elasto-Plasticity and Fracture MechanicsAnalysis of FaultingSimulation of FaultingBEM Simulation of FaultingAdvanced Topics:Integrated Earthquake SimulationUnified Visualization of Earthquake SimulationStandardization of Earthquake Resistant DesignAppendices:Earthquake MechanismsAnalytical MechanicsNumerical Techniques of Solving Wave EquationUnified Modeling Language Readership: Graduate students and researchers in earthquake engineering; researchers in computational mechanics and computer science.

Introduction to Computational Earthquake Engineering

Introduction to Computational Earthquake Engineering
Author: Muneo Hori
Publsiher: World Scientific
Total Pages: 440
Release: 2011-05-18
Genre: Technology & Engineering
ISBN: 9781908978417

Download Introduction to Computational Earthquake Engineering Book in PDF, Epub and Kindle

Introduction to Computational Earthquake Engineering covers solid continuum mechanics, finite element method and stochastic modeling comprehensively, with the second and third chapters explaining the numerical simulation of strong ground motion and faulting, respectively. Stochastic modeling is used for uncertain underground structures, and advanced analytical methods for linear and non-linear stochastic models are presented. The verification of these methods by comparing the simulation results with observed data is then presented, and examples of numerical simulations which apply these methods to practical problems are generously provided. Furthermore three advanced topics of computational earthquake engineering are covered, detailing examples of applying computational science technology to earthquake engineering problems. Contents:Preliminaries:Solid Continuum MechanicFinite Element MethodStochastic ModelingStrong Ground Motion:The Wave Equation for SolidsAnalysis of Strong Ground MotionSimulation of Strong Ground MotionFaulting:Elasto-Plasticity and Fracture MechanicsAnalysis of FaultingSimulation of FaultingBEM Simulation of FaultingAdvanced Topics:Integrated Earthquake SimulationUnified Visualisation of Earthquake SimulationStandardisation of Earthquake Resistant DesignMulti-Agent Simulation for Evacuation Process AnalysisAppendices:Earthquake MechanismsAnalytical MechanicsNumerical Techniques for Solving Wave EquationUnified Modeling Language Readership: Academic and industry: engineers, students; advanced undergraduates in the field of earthquake engineering. Keywords:Earthquake Engineering;Computational Mechanics;Structural Analysis;Wave Propagation;Elasto-Plastic Analysis;Fracture Analysis; Stochastic ModelingKey Features:Detailed explanation is given to modeling of uncertain ground structures; stochastic modeling which treats the uncertainty in a stochastic manner is usedSeveral key numerical algorithms and techniques are explained in solving large-scale, non-linear and dynamic problemsApplication of these methods to simulate actual strong ground motion and faulting is presented

Introduction to Computational Earthquake Engineering

Introduction to Computational Earthquake Engineering
Author: Hori Muneo
Publsiher: World Scientific
Total Pages: 452
Release: 2018-06-13
Genre: Technology & Engineering
ISBN: 9781786344533

Download Introduction to Computational Earthquake Engineering Book in PDF, Epub and Kindle

This book provides rigorous foundations of applying modern computational mechanics to earthquake engineering. The scope covers the numerical analysis of earthquake wave propagation processes and the faulting processes, and also presents the most advanced numerical simulations of earthquake hazards and disasters that can take place in an urban area. Two new chapters included are advanced topics on high performance computing and for constructing an analysis model. This is the first book in earthquake engineering that explains the application of modern numerical computation (which includes high performance computing) to various engineering seismology problems.