Integration of Distributed Generation in the Power System

Integration of Distributed Generation in the Power System
Author: Math H. J. Bollen,Fainan Hassan
Publsiher: John Wiley & Sons
Total Pages: 526
Release: 2011-08-09
Genre: Technology & Engineering
ISBN: 9780470643372

Download Integration of Distributed Generation in the Power System Book in PDF, Epub and Kindle

The integration of new sources of energy like wind power, solar-power, small-scale generation, or combined heat and power in the power grid is something that impacts a lot of stakeholders: network companies (both distribution and transmission), the owners and operators of the DG units, other end-users of the power grid (including normal consumers like you and me) and not in the least policy makers and regulators. There is a lot of misunderstanding about the impact of DG on the power grid, with one side (including mainly some but certainly not all, network companies) claiming that the lights will go out soon, whereas the other side (including some DG operators and large parks of the general public) claiming that there is nothing to worry about and that it's all a conspiracy of the large production companies that want to protect their own interests and keep the electricity price high. The authors are of the strong opinion that this is NOT the way one should approach such an important subject as the integration of new, more environmentally friendly, sources of energy in the power grid. With this book the authors aim to bring some clarity to the debate allowing all stakeholders together to move to a solution. This book will introduce systematic and transparent methods for quantifying the impact of DG on the power grid.

Integration of Distributed Energy Resources in Power Systems

Integration of Distributed Energy Resources in Power Systems
Author: Toshihisa Funabashi
Publsiher: Academic Press
Total Pages: 322
Release: 2016-03-23
Genre: Science
ISBN: 9780128032138

Download Integration of Distributed Energy Resources in Power Systems Book in PDF, Epub and Kindle

Integration of Distributed Energy Resources in Power Systems: Implementation, Operation and Control covers the operation of power transmission and distribution systems and their growing difficulty as the share of renewable energy sources in the world’s energy mix grows and the proliferation trend of small scale power generation becomes a reality. The book gives students at the graduate level, as well as researchers and power engineering professionals, an understanding of the key issues necessary for the development of such strategies. It explores the most relevant topics, with a special focus on transmission and distribution areas. Subjects such as voltage control, AC and DC microgrids, and power electronics are explored in detail for all sources, while not neglecting the specific challenges posed by the most used variable renewable energy sources. Presents the most relevant aspects of the integration of distributed energy into power systems, with special focus on the challenges for transmission and distribution Explores the state-of the-art in applications of the most current technology, giving readers a clear roadmap Deals with the technical and economic features of distributed energy resources and discusses their business models

Distributed Generation Systems

Distributed Generation Systems
Author: Gevork B. Gharehpetian,S. Mohammad Mousavi Agah
Publsiher: Butterworth-Heinemann
Total Pages: 588
Release: 2017-05-19
Genre: Technology & Engineering
ISBN: 9780128042632

Download Distributed Generation Systems Book in PDF, Epub and Kindle

Distributed Generation Systems: Design, Operation and Grid Integration closes the information gap between recent research on distributed generation and industrial plants, and provides solutions to their practical problems and limitations. It provides a clear picture of operation principles of distributed generation units, not only focusing on the power system perspective but targeting a specific need of the research community. This book is a useful reference for practitioners, featuring worked examples and figures on principal types of distributed generation with an emphasis on real-world examples, simulations, and illustrations. The book uses practical exercises relating to the concepts of operating and integrating DG units to distribution networks, and helps engineers accurately design systems and reduce maintenance costs. Provides examples and datasheets of principal systems and commercial data in MATLAB Presents guidance for accurate system designs and maintenance costs Identifies trouble shooting references for engineers Closes the information gap between recent research on distributed generation and industrial plants

Integration of Green and Renewable Energy in Electric Power Systems

Integration of Green and Renewable Energy in Electric Power Systems
Author: Ali Keyhani,Mohammad N. Marwali,Min Dai
Publsiher: John Wiley & Sons
Total Pages: 328
Release: 2009-11-20
Genre: Technology & Engineering
ISBN: 0470556765

Download Integration of Green and Renewable Energy in Electric Power Systems Book in PDF, Epub and Kindle

A practical, application-oriented text that presents analytical results for the better modeling and control of power converters in the integration of green energy in electric power systems The combined technology of power semiconductor switching devices, pulse width modulation algorithms, and control theories are being further developed along with the performance improvement of power semiconductors and microprocessors so that more efficient, reliable, and cheaper electric energy conversion can be achieved within the next decade. Integration of Green and Renewable Energy in Electric Power Systems covers the principles, analysis, and synthesis of closed loop control of pulse width modulated converters in power electronics systems, with special application emphasis on distributed generation systems and uninterruptible power supplies. The authors present two versions of a documented simulation test bed for homework problems and projects based on Matlab/Simulink, designed to help readers understand the content through simulations. The first consists of a number of problems and projects for classroom teaching convenience and learning. The second is based on the most recent work in control of power converters for the research of practicing engineers and industry researchers. Addresses a combination of the latest developments in control technology of pulse width modulation algorithms and digital control methods Problems and projects have detailed mathematical modeling, control design, solution steps, and results Uses a significant number of tables, circuit and block diagrams, and waveform plots with well-designed, class-tested problems/solutions and projects designed for the best teaching-learning interaction Provides computer simulation programs as examples for ease of understanding and platforms for the projects Covering major power-conversion applications that help professionals from a variety of industries, Integration of Green and Renewable Energy in Electric Power Systems provides practical, application-oriented system analysis and synthesis that is instructional and inspiring for practicing electrical engineers and researchers as well as undergraduate and graduate students.

Integration of Renewable and Distributed Energy Resources in Power Systems

Integration of Renewable and Distributed Energy Resources in Power Systems
Author: Tomás Gómez San Román,José Pablo Chaves-Áila
Publsiher: MDPI
Total Pages: 228
Release: 2020-12-02
Genre: Technology & Engineering
ISBN: 9783039434879

Download Integration of Renewable and Distributed Energy Resources in Power Systems Book in PDF, Epub and Kindle

The electric power sector is poised for transformative changes. Improvements in the cost and performance of a range of distributed energy generation (DG) technologies and the potential for breakthroughs in distributed energy storage (DS) are creating new options for onsite power generation and storage, driving increasing adoption and impacting utility distribution system operations. In addition, changing uses and use patterns for electricity—from plug-in electric vehicles (EVs) to demand response (DR)—are altering demands placed on the electric power system. Finally, the infusion of new information and communications technology (ICT) into the electric system and its markets is enabling the collection of immense volumes of data on power sector operations and use; unprecedented control of generation, networks, and loads; and new opportunities for the delivery of energy services. In this Special Issue of Energies, research papers on topics related to the integration of distributed energy resources (DG, DS, EV, and DR) are included. From technologies to software tools to system-wide evaluations, the impacts of all aforementioned distributed resources on both operation and planning are examined.

Handbook of Distributed Generation

Handbook of Distributed Generation
Author: Ramesh Bansal
Publsiher: Springer
Total Pages: 819
Release: 2017-03-07
Genre: Technology & Engineering
ISBN: 9783319513430

Download Handbook of Distributed Generation Book in PDF, Epub and Kindle

This book features extensive coverage of all Distributed Energy Generation technologies, highlighting the technical, environmental and economic aspects of distributed resource integration, such as line loss reduction, protection, control, storage, power electronics, reliability improvement, and voltage profile optimization. It explains how electric power system planners, developers, operators, designers, regulators and policy makers can derive many benefits with increased penetration of distributed generation units into smart distribution networks. It further demonstrates how to best realize these benefits via skillful integration of distributed energy sources, based upon an understanding of the characteristics of loads and network configuration.

Renewable Energy Integration

Renewable Energy Integration
Author: Lawrence E. Jones
Publsiher: Academic Press
Total Pages: 474
Release: 2014-06-12
Genre: Technology & Engineering
ISBN: 9780124081222

Download Renewable Energy Integration Book in PDF, Epub and Kindle

Renewable Energy Integration is a ground-breaking new resource - the first to offer a distilled examination of the intricacies of integrating renewables into the power grid and electricity markets. It offers informed perspectives from internationally renowned experts on the challenges to be met and solutions based on demonstrated best practices developed by operators around the world. The book's focus on practical implementation of strategies provides real-world context for theoretical underpinnings and the development of supporting policy frameworks. The book considers a myriad of wind, solar, wave and tidal integration issues, thus ensuring that grid operators with low or high penetration of renewable generation can leverage the victories achieved by their peers. Renewable Energy Integration highlights, carefully explains, and illustrates the benefits of advanced technologies and systems for coping with variability, uncertainty, and flexibility. Lays out the key issues around the integration of renewables into power grids and markets, from the intricacies of operational and planning considerations, to supporting regulatory and policy frameworks Provides global case studies that highlight the challenges of renewables integration and present field-tested solutions Illustrates enabling and disruptive technologies to support the management of variability, uncertainty and flexibility

Integration of Green and Renewable Energy in Electric Power Systems

Integration of Green and Renewable Energy in Electric Power Systems
Author: Ali Keyhani,Mohammad N. Marwali,Min Dai
Publsiher: John Wiley & Sons
Total Pages: 326
Release: 2009-12-14
Genre: Technology & Engineering
ISBN: 9780470187760

Download Integration of Green and Renewable Energy in Electric Power Systems Book in PDF, Epub and Kindle

A practical, application-oriented text that presents analytical results for the better modeling and control of power converters in the integration of green energy in electric power systems The combined technology of power semiconductor switching devices, pulse width modulation algorithms, and control theories are being further developed along with the performance improvement of power semiconductors and microprocessors so that more efficient, reliable, and cheaper electric energy conversion can be achieved within the next decade. Integration of Green and Renewable Energy in Electric Power Systems covers the principles, analysis, and synthesis of closed loop control of pulse width modulated converters in power electronics systems, with special application emphasis on distributed generation systems and uninterruptible power supplies. The authors present two versions of a documented simulation test bed for homework problems and projects based on Matlab/Simulink, designed to help readers understand the content through simulations. The first consists of a number of problems and projects for classroom teaching convenience and learning. The second is based on the most recent work in control of power converters for the research of practicing engineers and industry researchers. Addresses a combination of the latest developments in control technology of pulse width modulation algorithms and digital control methods Problems and projects have detailed mathematical modeling, control design, solution steps, and results Uses a significant number of tables, circuit and block diagrams, and waveform plots with well-designed, class-tested problems/solutions and projects designed for the best teaching-learning interaction Provides computer simulation programs as examples for ease of understanding and platforms for the projects Covering major power-conversion applications that help professionals from a variety of industries, Integration of Green and Renewable Energy in Electric Power Systems provides practical, application-oriented system analysis and synthesis that is instructional and inspiring for practicing electrical engineers and researchers as well as undergraduate and graduate students.