Iterative Methods for Sparse Linear Systems

Iterative Methods for Sparse Linear Systems
Author: Yousef Saad
Publsiher: SIAM
Total Pages: 537
Release: 2003-04-01
Genre: Mathematics
ISBN: 9780898715347

Download Iterative Methods for Sparse Linear Systems Book in PDF, Epub and Kindle

Mathematics of Computing -- General.

Iterative Methods and Preconditioning for Large and Sparse Linear Systems with Applications

Iterative Methods and Preconditioning for Large and Sparse Linear Systems with Applications
Author: Daniele Bertaccini,Fabio Durastante
Publsiher: CRC Press
Total Pages: 366
Release: 2018-02-19
Genre: Mathematics
ISBN: 9781351649612

Download Iterative Methods and Preconditioning for Large and Sparse Linear Systems with Applications Book in PDF, Epub and Kindle

This book describes, in a basic way, the most useful and effective iterative solvers and appropriate preconditioning techniques for some of the most important classes of large and sparse linear systems. The solution of large and sparse linear systems is the most time-consuming part for most of the scientific computing simulations. Indeed, mathematical models become more and more accurate by including a greater volume of data, but this requires the solution of larger and harder algebraic systems. In recent years, research has focused on the efficient solution of large sparse and/or structured systems generated by the discretization of numerical models by using iterative solvers.

Iterative Methods for Solving Linear Systems

Iterative Methods for Solving Linear Systems
Author: Anne Greenbaum
Publsiher: SIAM
Total Pages: 225
Release: 1997-01-01
Genre: Mathematics
ISBN: 9780898713961

Download Iterative Methods for Solving Linear Systems Book in PDF, Epub and Kindle

Mathematics of Computing -- Numerical Analysis.

Iterative Methods for Sparse Linear Systems

Iterative Methods for Sparse Linear Systems
Author: Yousef Saad
Publsiher: SIAM
Total Pages: 546
Release: 2003-01-01
Genre: Mathematics
ISBN: 0898718007

Download Iterative Methods for Sparse Linear Systems Book in PDF, Epub and Kindle

Since the first edition of this book was published in 1996, tremendous progress has been made in the scientific and engineering disciplines regarding the use of iterative methods for linear systems. The size and complexity of the new generation of linear and nonlinear systems arising in typical applications has grown. Solving the three-dimensional models of these problems using direct solvers is no longer effective. At the same time, parallel computing has penetrated these application areas as it became less expensive and standardized. Iterative methods are easier than direct solvers to implement on parallel computers but require approaches and solution algorithms that are different from classical methods. Iterative Methods for Sparse Linear Systems, Second Edition gives an in-depth, up-to-date view of practical algorithms for solving large-scale linear systems of equations. These equations can number in the millions and are sparse in the sense that each involves only a small number of unknowns. The methods described are iterative, i.e., they provide sequences of approximations that will converge to the solution.

Direct Methods for Sparse Linear Systems

Direct Methods for Sparse Linear Systems
Author: Timothy A. Davis
Publsiher: SIAM
Total Pages: 228
Release: 2006-09-01
Genre: Computers
ISBN: 9780898716139

Download Direct Methods for Sparse Linear Systems Book in PDF, Epub and Kindle

The sparse backslash book. Everything you wanted to know but never dared to ask about modern direct linear solvers. Chen Greif, Assistant Professor, Department of Computer Science, University of British Columbia.Overall, the book is magnificent. It fills a long-felt need for an accessible textbook on modern sparse direct methods. Its choice of scope is excellent John Gilbert, Professor, Department of Computer Science, University of California, Santa Barbara.Computational scientists often encounter problems requiring the solution of sparse systems of linear equations. Attacking these problems efficiently requires an in-depth knowledge of the underlying theory, algorithms, and data structures found in sparse matrix software libraries. Here, Davis presents the fundamentals of sparse matrix algorithms to provide the requisite background. The book includes CSparse, a concise downloadable sparse matrix package that illustrates the algorithms and theorems presented in the book and equips readers with the tools necessary to understand larger and more complex software packages.With a strong emphasis on MATLAB and the C programming language, Direct Methods for Sparse Linear Systems equips readers with the working knowledge required to use sparse solver packages and write code to interface applications to those packages. The book also explains how MATLAB performs its sparse matrix computations.Audience This invaluable book is essential to computational scientists and software developers who want to understand the theory and algorithms behind modern techniques used to solve large sparse linear systems. The book also serves as an excellent practical resource for students with an interest in combinatorial scientific computing.Preface; Chapter 1: Introduction; Chapter 2: Basic algorithms; Chapter 3: Solving triangular systems; Chapter 4: Cholesky factorization; Chapter 5: Orthogonal methods; Chapter 6: LU factorization; Chapter 7: Fill-reducing orderings; Chapter 8: Solving sparse linear systems; Chapter 9: CSparse; Chapter 10: Sparse matrices in MATLAB; Appendix: Basics of the C programming language; Bibliography; Index.

Templates for the Solution of Linear Systems

Templates for the Solution of Linear Systems
Author: Richard Barrett,Michael W. Berry,Tony F. Chan,James Demmel,June Donato,Jack Dongarra,Victor Eijkhout,Roldan Pozo,Charles Romine,Henk van der Vorst
Publsiher: SIAM
Total Pages: 141
Release: 1994-01-01
Genre: Mathematics
ISBN: 1611971535

Download Templates for the Solution of Linear Systems Book in PDF, Epub and Kindle

In this book, which focuses on the use of iterative methods for solving large sparse systems of linear equations, templates are introduced to meet the needs of both the traditional user and the high-performance specialist. Templates, a description of a general algorithm rather than the executable object or source code more commonly found in a conventional software library, offer whatever degree of customization the user may desire. Templates offer three distinct advantages: they are general and reusable; they are not language specific; and they exploit the expertise of both the numerical analyst, who creates a template reflecting in-depth knowledge of a specific numerical technique, and the computational scientist, who then provides "value-added" capability to the general template description, customizing it for specific needs. For each template that is presented, the authors provide: a mathematical description of the flow of algorithm; discussion of convergence and stopping criteria to use in the iteration; suggestions for applying a method to special matrix types; advice for tuning the template; tips on parallel implementations; and hints as to when and why a method is useful.

Iterative Methods and Preconditioners for Systems of Linear Equations

Iterative Methods and Preconditioners for Systems of Linear Equations
Author: Gabriele Ciaramella,Martin J. Gander
Publsiher: SIAM
Total Pages: 285
Release: 2022-02-08
Genre: Mathematics
ISBN: 9781611976908

Download Iterative Methods and Preconditioners for Systems of Linear Equations Book in PDF, Epub and Kindle

Iterative methods use successive approximations to obtain more accurate solutions. This book gives an introduction to iterative methods and preconditioning for solving discretized elliptic partial differential equations and optimal control problems governed by the Laplace equation, for which the use of matrix-free procedures is crucial. All methods are explained and analyzed starting from the historical ideas of the inventors, which are often quoted from their seminal works. Iterative Methods and Preconditioners for Systems of Linear Equations grew out of a set of lecture notes that were improved and enriched over time, resulting in a clear focus for the teaching methodology, which derives complete convergence estimates for all methods, illustrates and provides MATLAB codes for all methods, and studies and tests all preconditioners first as stationary iterative solvers. This textbook is appropriate for undergraduate and graduate students who want an overview or deeper understanding of iterative methods. Its focus on both analysis and numerical experiments allows the material to be taught with very little preparation, since all the arguments are self-contained, and makes it appropriate for self-study as well. It can be used in courses on iterative methods, Krylov methods and preconditioners, and numerical optimal control. Scientists and engineers interested in new topics and applications will also find the text useful.

Iterative Methods and Preconditioning for Large and Sparse Linear Systems with Applications

Iterative Methods and Preconditioning for Large and Sparse Linear Systems with Applications
Author: Daniele Bertaccini,Fabio Durastante
Publsiher: CRC Press
Total Pages: 354
Release: 2018-02-19
Genre: Mathematics
ISBN: 9781498764179

Download Iterative Methods and Preconditioning for Large and Sparse Linear Systems with Applications Book in PDF, Epub and Kindle

This book describes, in a basic way, the most useful and effective iterative solvers and appropriate preconditioning techniques for some of the most important classes of large and sparse linear systems. The solution of large and sparse linear systems is the most time-consuming part for most of the scientific computing simulations. Indeed, mathematical models become more and more accurate by including a greater volume of data, but this requires the solution of larger and harder algebraic systems. In recent years, research has focused on the efficient solution of large sparse and/or structured systems generated by the discretization of numerical models by using iterative solvers.