Machine Learning With Radiation Oncology Big Data

Machine Learning With Radiation Oncology Big Data
Author: Jun Deng,Issam El Naqa,Lei Xing
Publsiher: Frontiers Media SA
Total Pages: 146
Release: 2019-01-21
Genre: Electronic Book
ISBN: 9782889457304

Download Machine Learning With Radiation Oncology Big Data Book in PDF, Epub and Kindle

Machine Learning With Radiation Oncology Big Data

Machine Learning With Radiation Oncology Big Data
Author: Anonim
Publsiher: Unknown
Total Pages: 0
Release: 2019
Genre: Electronic Book
ISBN: OCLC:1368454975

Download Machine Learning With Radiation Oncology Big Data Book in PDF, Epub and Kindle

Radiation oncology is uniquely positioned to harness the power of big data as vast amounts of data are generated at an unprecedented pace for individual patients in imaging studies and radiation treatments worldwide. The big data encountered in the radiotherapy clinic may include patient demographics stored in the electronic medical record (EMR) systems, plan settings and dose volumetric information of the tumors and normal tissues generated by treatment planning systems (TPS), anatomical and functional information from diagnostic and therapeutic imaging modalities (e.g., CT, PET, MRI and kVCBCT) stored in picture archiving and communication systems (PACS), as well as the genomics, proteomics and metabolomics information derived from blood and tissue specimens. Yet, the great potential of big data in radiation oncology has not been fully exploited for the benefits of cancer patients due to a variety of technical hurdles and hardware limitations. With recent development in computer technology, there have been increasing and promising applications of machine learning algorithms involving the big data in radiation oncology. This research topic is intended to present novel technological breakthroughs and state-of-the-art developments in machine learning and data mining in radiation oncology in recent years.

Big Data in Radiation Oncology

Big Data in Radiation Oncology
Author: Jun Deng,Lei Xing
Publsiher: CRC Press
Total Pages: 355
Release: 2019-03-07
Genre: Science
ISBN: 9781351801119

Download Big Data in Radiation Oncology Book in PDF, Epub and Kindle

Big Data in Radiation Oncology gives readers an in-depth look into how big data is having an impact on the clinical care of cancer patients. While basic principles and key analytical and processing techniques are introduced in the early chapters, the rest of the book turns to clinical applications, in particular for cancer registries, informatics, radiomics, radiogenomics, patient safety and quality of care, patient-reported outcomes, comparative effectiveness, treatment planning, and clinical decision-making. More features of the book are: Offers the first focused treatment of the role of big data in the clinic and its impact on radiation therapy. Covers applications in cancer registry, radiomics, patient safety, quality of care, treatment planning, decision making, and other key areas. Discusses the fundamental principles and techniques for processing and analysis of big data. Address the use of big data in cancer prevention, detection, prognosis, and management. Provides practical guidance on implementation for clinicians and other stakeholders. Dr. Jun Deng is a professor at the Department of Therapeutic Radiology of Yale University School of Medicine and an ABR board certified medical physicist at Yale-New Haven Hospital. He has received numerous honors and awards such as Fellow of Institute of Physics in 2004, AAPM Medical Physics Travel Grant in 2008, ASTRO IGRT Symposium Travel Grant in 2009, AAPM-IPEM Medical Physics Travel Grant in 2011, and Fellow of AAPM in 2013. Lei Xing, Ph.D., is the Jacob Haimson Professor of Medical Physics and Director of Medical Physics Division of Radiation Oncology Department at Stanford University. His research has been focused on inverse treatment planning, tomographic image reconstruction, CT, optical and PET imaging instrumentations, image guided interventions, nanomedicine, and applications of molecular imaging in radiation oncology. Dr. Xing is on the editorial boards of a number of journals in radiation physics and medical imaging, and is recipient of numerous awards, including the American Cancer Society Research Scholar Award, The Whitaker Foundation Grant Award, and a Max Planck Institute Fellowship.

Machine Learning and Artificial Intelligence in Radiation Oncology

Machine Learning and Artificial Intelligence in Radiation Oncology
Author: Barry S. Rosenstein,Tim Rattay,John Kang
Publsiher: Academic Press
Total Pages: 480
Release: 2023-12-02
Genre: Science
ISBN: 9780128220016

Download Machine Learning and Artificial Intelligence in Radiation Oncology Book in PDF, Epub and Kindle

Machine Learning and Artificial Intelligence in Radiation Oncology: A Guide for Clinicians is designed for the application of practical concepts in machine learning to clinical radiation oncology. It addresses the existing void in a resource to educate practicing clinicians about how machine learning can be used to improve clinical and patient-centered outcomes. This book is divided into three sections: the first addresses fundamental concepts of machine learning and radiation oncology, detailing techniques applied in genomics; the second section discusses translational opportunities, such as in radiogenomics and autosegmentation; and the final section encompasses current clinical applications in clinical decision making, how to integrate AI into workflow, use cases, and cross-collaborations with industry. The book is a valuable resource for oncologists, radiologists and several members of biomedical field who need to learn more about machine learning as a support for radiation oncology. Presents content written by practicing clinicians and research scientists, allowing a healthy mix of both new clinical ideas as well as perspectives on how to translate research findings into the clinic Provides perspectives from artificial intelligence (AI) industry researchers to discuss novel theoretical approaches and possibilities on academic collaborations Brings diverse points-of-view from an international group of experts to provide more balanced viewpoints on a complex topic

Big Data in Radiation Oncology

Big Data in Radiation Oncology
Author: Jun Deng,Lei Xing
Publsiher: CRC Press
Total Pages: 355
Release: 2019-03-07
Genre: Science
ISBN: 9781351801119

Download Big Data in Radiation Oncology Book in PDF, Epub and Kindle

Big Data in Radiation Oncology gives readers an in-depth look into how big data is having an impact on the clinical care of cancer patients. While basic principles and key analytical and processing techniques are introduced in the early chapters, the rest of the book turns to clinical applications, in particular for cancer registries, informatics, radiomics, radiogenomics, patient safety and quality of care, patient-reported outcomes, comparative effectiveness, treatment planning, and clinical decision-making. More features of the book are: Offers the first focused treatment of the role of big data in the clinic and its impact on radiation therapy. Covers applications in cancer registry, radiomics, patient safety, quality of care, treatment planning, decision making, and other key areas. Discusses the fundamental principles and techniques for processing and analysis of big data. Address the use of big data in cancer prevention, detection, prognosis, and management. Provides practical guidance on implementation for clinicians and other stakeholders. Dr. Jun Deng is a professor at the Department of Therapeutic Radiology of Yale University School of Medicine and an ABR board certified medical physicist at Yale-New Haven Hospital. He has received numerous honors and awards such as Fellow of Institute of Physics in 2004, AAPM Medical Physics Travel Grant in 2008, ASTRO IGRT Symposium Travel Grant in 2009, AAPM-IPEM Medical Physics Travel Grant in 2011, and Fellow of AAPM in 2013. Lei Xing, Ph.D., is the Jacob Haimson Professor of Medical Physics and Director of Medical Physics Division of Radiation Oncology Department at Stanford University. His research has been focused on inverse treatment planning, tomographic image reconstruction, CT, optical and PET imaging instrumentations, image guided interventions, nanomedicine, and applications of molecular imaging in radiation oncology. Dr. Xing is on the editorial boards of a number of journals in radiation physics and medical imaging, and is recipient of numerous awards, including the American Cancer Society Research Scholar Award, The Whitaker Foundation Grant Award, and a Max Planck Institute Fellowship.

Machine Learning in Radiation Oncology

Machine Learning in Radiation Oncology
Author: Issam El Naqa,Ruijiang Li,Martin J. Murphy
Publsiher: Springer
Total Pages: 336
Release: 2015-06-19
Genre: Medical
ISBN: 9783319183053

Download Machine Learning in Radiation Oncology Book in PDF, Epub and Kindle

​This book provides a complete overview of the role of machine learning in radiation oncology and medical physics, covering basic theory, methods, and a variety of applications in medical physics and radiotherapy. An introductory section explains machine learning, reviews supervised and unsupervised learning methods, discusses performance evaluation, and summarizes potential applications in radiation oncology. Detailed individual sections are then devoted to the use of machine learning in quality assurance; computer-aided detection, including treatment planning and contouring; image-guided radiotherapy; respiratory motion management; and treatment response modeling and outcome prediction. The book will be invaluable for students and residents in medical physics and radiation oncology and will also appeal to more experienced practitioners and researchers and members of applied machine learning communities.

Big Data in Oncology Impact Challenges and Risk Assessment

Big Data in Oncology  Impact  Challenges  and Risk Assessment
Author: Neeraj Kumar Fuloria,Rishabha Malviya,Swati Verma,Balamurugan Balusamy
Publsiher: CRC Press
Total Pages: 415
Release: 2023-12-21
Genre: Medical
ISBN: 9781000965261

Download Big Data in Oncology Impact Challenges and Risk Assessment Book in PDF, Epub and Kindle

We are in the era of large-scale science. In oncology there is a huge number of data sets grouping information on cancer genomes, transcriptomes, clinical data, and more. The challenge of big data in cancer is to integrate all this diversity of data collected into a unique platform that can be analyzed, leading to the generation of readable files. The possibility of harnessing information from all the accumulated data leads to an improvement in cancer patient treatment and outcome. Solving the big data problem in oncology has multiple facets. Big data in Oncology: Impact, Challenges, and Risk Assessment brings together insights from emerging sophisticated information and communication technologies such as artificial intelligence, data science, and big data analytics for cancer management. This book focuses on targeted disease treatment using big data analytics. It provides information about targeted treatment in oncology, challenges and application of big data in cancer therapy. Recent developments in the fields of artificial intelligence, machine learning, medical imaging, personalized medicine, computing and data analytics for improved patient care. Description of the application of big data with AI to discover new targeting points for cancer treatment. Summary of several risk assessments in the field of oncology using big data. Focus on prediction of doses in oncology using big data The most targeted or relevant audience is academics, research scholars, health care professionals, hospital management, pharmaceutical chemists, the biomedical industry, software engineers and IT professionals.

Big Data in Radiation Oncology

Big Data in Radiation Oncology
Author: Jun Deng,Lei Xing
Publsiher: CRC Press
Total Pages: 289
Release: 2019-03-07
Genre: Science
ISBN: 9781351801126

Download Big Data in Radiation Oncology Book in PDF, Epub and Kindle

Big Data in Radiation Oncology gives readers an in-depth look into how big data is having an impact on the clinical care of cancer patients. While basic principles and key analytical and processing techniques are introduced in the early chapters, the rest of the book turns to clinical applications, in particular for cancer registries, informatics, radiomics, radiogenomics, patient safety and quality of care, patient-reported outcomes, comparative effectiveness, treatment planning, and clinical decision-making. More features of the book are: Offers the first focused treatment of the role of big data in the clinic and its impact on radiation therapy. Covers applications in cancer registry, radiomics, patient safety, quality of care, treatment planning, decision making, and other key areas. Discusses the fundamental principles and techniques for processing and analysis of big data. Address the use of big data in cancer prevention, detection, prognosis, and management. Provides practical guidance on implementation for clinicians and other stakeholders. Dr. Jun Deng is a professor at the Department of Therapeutic Radiology of Yale University School of Medicine and an ABR board certified medical physicist at Yale-New Haven Hospital. He has received numerous honors and awards such as Fellow of Institute of Physics in 2004, AAPM Medical Physics Travel Grant in 2008, ASTRO IGRT Symposium Travel Grant in 2009, AAPM-IPEM Medical Physics Travel Grant in 2011, and Fellow of AAPM in 2013. Lei Xing, Ph.D., is the Jacob Haimson Professor of Medical Physics and Director of Medical Physics Division of Radiation Oncology Department at Stanford University. His research has been focused on inverse treatment planning, tomographic image reconstruction, CT, optical and PET imaging instrumentations, image guided interventions, nanomedicine, and applications of molecular imaging in radiation oncology. Dr. Xing is on the editorial boards of a number of journals in radiation physics and medical imaging, and is recipient of numerous awards, including the American Cancer Society Research Scholar Award, The Whitaker Foundation Grant Award, and a Max Planck Institute Fellowship.