Multiscale Modeling and Uncertainty Quantification of Materials and Structures

Multiscale Modeling and Uncertainty Quantification of Materials and Structures
Author: Manolis Papadrakakis,George Stefanou
Publsiher: Springer
Total Pages: 306
Release: 2014-07-02
Genre: Science
ISBN: 9783319063317

Download Multiscale Modeling and Uncertainty Quantification of Materials and Structures Book in PDF, Epub and Kindle

This book contains the proceedings of the IUTAM Symposium on Multiscale Modeling and Uncertainty Quantification of Materials and Structures that was held at Santorini, Greece, September 9 – 11, 2013. It consists of 20 chapters which are divided in five thematic topics: Damage and fracture, homogenization, inverse problems–identification, multiscale stochastic mechanics and stochastic dynamics. Over the last few years, the intense research activity at micro scale and nano scale reflected the need to account for disparate levels of uncertainty from various sources and across scales. As even over-refined deterministic approaches are not able to account for this issue, an efficient blending of stochastic and multiscale methodologies is required to provide a rational framework for the analysis and design of materials and structures. The purpose of this IUTAM Symposium was to promote achievements in uncertainty quantification combined with multiscale modeling and to encourage research and development in this growing field with the aim of improving the safety and reliability of engineered materials and structures. Special emphasis was placed on multiscale material modeling and simulation as well as on the multiscale analysis and uncertainty quantification of fracture mechanics of heterogeneous media. The homogenization of two-phase random media was also thoroughly examined in several presentations. Various topics of multiscale stochastic mechanics, such as identification of material models, scale coupling, modeling of random microstructures, analysis of CNT-reinforced composites and stochastic finite elements, have been analyzed and discussed. A large number of papers were finally devoted to innovative methods in stochastic dynamics.

Uncertainty Quantification in Multiscale Materials Modeling

Uncertainty Quantification in Multiscale Materials Modeling
Author: Yan Wang,David L. McDowell
Publsiher: Woodhead Publishing Limited
Total Pages: 604
Release: 2020-03-12
Genre: Materials science
ISBN: 9780081029411

Download Uncertainty Quantification in Multiscale Materials Modeling Book in PDF, Epub and Kindle

Uncertainty Quantification in Multiscale Materials Modeling provides a complete overview of uncertainty quantification (UQ) in computational materials science. It provides practical tools and methods along with examples of their application to problems in materials modeling. UQ methods are applied to various multiscale models ranging from the nanoscale to macroscale. This book presents a thorough synthesis of the state-of-the-art in UQ methods for materials modeling, including Bayesian inference, surrogate modeling, random fields, interval analysis, and sensitivity analysis, providing insight into the unique characteristics of models framed at each scale, as well as common issues in modeling across scales.

Multiscale Modeling and Simulation of Composite Materials and Structures

Multiscale Modeling and Simulation of Composite Materials and Structures
Author: Young Kwon,David H. Allen,Ramesh R. Talreja
Publsiher: Springer Science & Business Media
Total Pages: 634
Release: 2007-12-04
Genre: Technology & Engineering
ISBN: 9780387363189

Download Multiscale Modeling and Simulation of Composite Materials and Structures Book in PDF, Epub and Kindle

This book presents the state-of-the-art in multiscale modeling and simulation techniques for composite materials and structures. It focuses on the structural and functional properties of engineering composites and the sustainable high performance of components and structures. The multiscale techniques can be also applied to nanocomposites which are important application areas in nanotechnology. There are few books available on this topic.

Materials with Internal Structure

Materials with Internal Structure
Author: Patrizia Trovalusci
Publsiher: Springer
Total Pages: 135
Release: 2015-10-17
Genre: Science
ISBN: 9783319214948

Download Materials with Internal Structure Book in PDF, Epub and Kindle

The book presents a series of concise papers by researchers specialized in various fields of continuum and computational mechanics and of material science. The focus is on principles and strategies for multiscale modeling and simulation of complex heterogeneous materials, with periodic or random microstructure, subjected to various types of mechanical, thermal, chemical loadings and environmental effects. A wide overview of complex behavior of materials (plasticity, damage, fracture, growth, etc.) is provided. Among various approaches, attention is given to advanced non-classical continua modeling which, provided by constitutive characterization for the internal and external actions (in particular boundary conditions), is a very powerful frame for the gross mechanical description of complex material behaviors, able to circumvent the restrictions of classical coarse–graining multiscale approaches.

Multiscale Modeling of Heterogeneous Structures

Multiscale Modeling of Heterogeneous Structures
Author: Jurica Sorić,Peter Wriggers,Olivier Allix
Publsiher: Springer
Total Pages: 381
Release: 2017-11-30
Genre: Science
ISBN: 9783319654638

Download Multiscale Modeling of Heterogeneous Structures Book in PDF, Epub and Kindle

This book provides an overview of multiscale approaches and homogenization procedures as well as damage evaluation and crack initiation, and addresses recent advances in the analysis and discretization of heterogeneous materials. It also highlights the state of the art in this research area with respect to different computational methods, software development and applications to engineering structures. The first part focuses on defects in composite materials including their numerical and experimental investigations; elastic as well as elastoplastic constitutive models are considered, where the modeling has been performed at macro- and micro levels. The second part is devoted to novel computational schemes applied on different scales and discusses the validation of numerical results. The third part discusses gradient enhanced modeling, in particular quasi-brittle and ductile damage, using the gradient enhanced approach. The final part addresses thermoplasticity, solid-liquid mixtures and ferroelectric models. The contents are based on the international workshop “Multiscale Modeling of Heterogeneous Structures” (MUMO 2016), held in Dubrovnik, Croatia in September 2016.

Uncertainty Quantification in Multiscale Materials Modeling

Uncertainty Quantification in Multiscale Materials Modeling
Author: Yan Wang,David L. McDowell
Publsiher: Woodhead Publishing
Total Pages: 606
Release: 2020-03-10
Genre: Technology & Engineering
ISBN: 9780081029428

Download Uncertainty Quantification in Multiscale Materials Modeling Book in PDF, Epub and Kindle

Uncertainty Quantification in Multiscale Materials Modeling provides a complete overview of uncertainty quantification (UQ) in computational materials science. It provides practical tools and methods along with examples of their application to problems in materials modeling. UQ methods are applied to various multiscale models ranging from the nanoscale to macroscale. This book presents a thorough synthesis of the state-of-the-art in UQ methods for materials modeling, including Bayesian inference, surrogate modeling, random fields, interval analysis, and sensitivity analysis, providing insight into the unique characteristics of models framed at each scale, as well as common issues in modeling across scales. Synthesizes available UQ methods for materials modeling Provides practical tools and examples for problem solving in modeling material behavior across various length scales Demonstrates UQ in density functional theory, molecular dynamics, kinetic Monte Carlo, phase field, finite element method, multiscale modeling, and to support decision making in materials design Covers quantum, atomistic, mesoscale, and engineering structure-level modeling and simulation

Multiscale Modelling and Optimisation of Materials and Structures

Multiscale Modelling and Optimisation of Materials and Structures
Author: Tadeusz Burczynski,Maciej Pietrzyk,Waclaw Kus,Lukasz Madej,Adam Mrozek,Lukasz Rauch
Publsiher: John Wiley & Sons
Total Pages: 440
Release: 2022-05-19
Genre: Technology & Engineering
ISBN: 9781118536452

Download Multiscale Modelling and Optimisation of Materials and Structures Book in PDF, Epub and Kindle

Addresses the very topical, crucial and original subject of parameter identification and optimization within multiscale modeling methods Multiscale Modelling and Optimization of Materials and Structures presents an important and challenging area of research that enables the design of new materials and structures with better quality, strength and performance parameters as well as the creation of reliable models that take into account structural, material and topological properties at different scales. The authors’ approach is four-fold; 1) the basic principles of micro and nano scale modeling techniques; 2) the connection of micro and/or nano scale models with macro simulation software; 3) optimization development in the framework of multiscale engineering and the solution of identification problems; 4) the computer science techniques used in this model and advice for scientists interested in developing their own models and software for multiscale analysis and optimization. The authors present several approaches such as the bridging and homogenization methods, as well as the general formulation of complex optimization and identification problems in multiscale modelling. They apply global optimization algorithms based on robust bioinspired algorithms, proposing parallel and multi-subpopulation approaches in order to speed-up computations, and discuss several numerical examples of multiscale modeling, optimization and identification of composite and functionally graded engineering materials and bone tissues. Multiscale Modelling and Optimization of Materials and Structures is thereby a valuable source of information for young scientists and students looking to develop their own models, write their own computer programs and implement them into simulation systems. Describes micro and nano scale models developed by the authors along with case studies of analysis and optimization Discusses the problems of computing costs, efficiency of information transfer, effective use of the computer memory and several other aspects of development of multiscale models Includes real physical, chemical and experimental studies with modern experimental techniques Provides a valuable source of information for young scientists and students looking to develop their own models, write their own computer programs, and implement them into simulation systems.

Multiscale Theory of Composites and Random Media

Multiscale Theory of Composites and Random Media
Author: Xi Frank Xu
Publsiher: CRC Press
Total Pages: 306
Release: 2018-09-21
Genre: Science
ISBN: 9780429894381

Download Multiscale Theory of Composites and Random Media Book in PDF, Epub and Kindle

This is the first book to introduce Green-function-based multiscale theory and the corresponding finite element method, which are readily applicable to composites and random media. The methodology is considered to be the one that most effectively tackles the uncertainty of stress propagation in complex heterogeneities of random media, and which presents multiscale theory from distinctive scale separation and scale-coupling viewpoints. Deliberately taking a multiscale perspective, it covers scale separation and then scale coupling. Both micromechanics and novel scale-coupling mechanics are described in relation to variational principles and bounds, as well as in the emerging topics on percolation and scale-coupling computation. It gives detail on the different bounds encountered, covering classical second and third order, new fourth order, and innovative ellipsoidal variations. Green-function-based multiscale theory is addressed to applications in solid mechanics and transport of complex media ranging from micro- and nano-composites, polycrystals, soils, rocks, cementitious materials, to biological materials. It is useful as a graduate textbook in civil and mechanical engineering and as a reference.