Multiscale Modeling of Additively Manufactured Metals

Multiscale Modeling of Additively Manufactured Metals
Author: Yi Zhang,Yeon-Gil Jung,Jing Zhang
Publsiher: Elsevier
Total Pages: 252
Release: 2020-06-29
Genre: Technology & Engineering
ISBN: 9780128225592

Download Multiscale Modeling of Additively Manufactured Metals Book in PDF, Epub and Kindle

Multiscale Modeling of Additively Manufactured Metals: Application to Laser Powder Bed Fusion Process provides comprehensive coverage on the latest methodology in additive manufacturing (AM) modeling and simulation. Although there are extensive advances within the AM field, challenges to predictive theoretical and computational approaches still hinder the widespread adoption of AM. The book reviews metal additive materials and processes and discusses multiscale/multiphysics modeling strategies. In addition, coverage of modeling and simulation of AM process in order to understand the process-structure-property relationship is reviewed, along with the modeling of morphology evolution, phase transformation, and defect formation in AM parts. Residual stress, distortion, plasticity/damage in AM parts are also considered, with scales associated with the spatial, temporal and/or material domains reviewed. This book is useful for graduate students, engineers and professionals working on AM materials, equipment, process, development and modeling. Includes the fundamental principles of additive manufacturing modeling techniques Presents various modeling tools/software for AM modeling Discusses various design methods and how to optimize the AM process using these models

Quality Analysis of Additively Manufactured Metals

Quality Analysis of Additively Manufactured Metals
Author: Javad Kadkhodapour,Siegfried Schmauder,Felix Sajadi
Publsiher: Elsevier
Total Pages: 858
Release: 2022-11-30
Genre: Technology & Engineering
ISBN: 9780323886499

Download Quality Analysis of Additively Manufactured Metals Book in PDF, Epub and Kindle

Quality Analysis of Additively Manufactured Metals: Simulation Approaches, Processes, and Microstructure Properties provides readers with a firm understanding of the failure and fatigue processes of additively manufactured metals. With a focus on computational methods, the book analyzes the process-microstructure-property relationship of these metals and how it affects their quality while also providing numerical, analytical, and experimental data for material design and investigation optimization. It outlines basic additive manufacturing processes for metals, strategies for modeling the microstructural features of metals and how these features differ based on the manufacturing process, and more.Improvement of additively manufactured metals through predictive simulation methods and microdamage and micro-failure in quasi-static and cyclic loading scenarios are covered, as are topology optimization methods and residual stress analysis techniques. The book concludes with a section featuring case studies looking at additively manufactured metals in automotive, biomedical and aerospace settings. Provides insights and outlines techniques for analyzing why additively manufactured metals fail and strategies for avoiding those failures Defines key terms and concepts related to the failure analysis, quality assurance and optimization processes of additively manufactured metals Includes simulation results, experimental data and case studies

Integrated Computational Materials Engineering ICME for Metals

Integrated Computational Materials Engineering  ICME  for Metals
Author: Mark F. Horstemeyer
Publsiher: John Wiley & Sons
Total Pages: 474
Release: 2012-06-07
Genre: Technology & Engineering
ISBN: 9781118342657

Download Integrated Computational Materials Engineering ICME for Metals Book in PDF, Epub and Kindle

State-of-the-technology tools for designing, optimizing, and manufacturing new materials Integrated computational materials engineering (ICME) uses computational materials science tools within a holistic system in order to accelerate materials development, improve design optimization, and unify design and manufacturing. Increasingly, ICME is the preferred paradigm for design, development, and manufacturing of structural products. Written by one of the world's leading ICME experts, this text delivers a comprehensive, practical introduction to the field, guiding readers through multiscale materials processing modeling and simulation with easy-to-follow explanations and examples. Following an introductory chapter exploring the core concepts and the various disciplines that have contributed to the development of ICME, the text covers the following important topics with their associated length scale bridging methodologies: Macroscale continuum internal state variable plasticity and damage theory and multistage fatigue Mesoscale analysis: continuum theory methods with discrete features and methods Discrete dislocation dynamics simulations Atomistic modeling methods Electronics structures calculations Next, the author provides three chapters dedicated to detailed case studies, including "From Atoms to Autos: A Redesign of a Cadillac Control Arm," that show how the principles and methods of ICME work in practice. The final chapter examines the future of ICME, forecasting the development of new materials and engineering structures with the help of a cyberinfrastructure that has been recently established. Integrated Computational Materials Engineering (ICME) for Metals is recommended for both students and professionals in engineering and materials science, providing them with new state-of-the-technology tools for selecting, designing, optimizing, and manufacturing new materials. Instructors who adopt this text for coursework can take advantage of PowerPoint lecture notes, a questions and solutions manual, and tutorials to guide students through the models and codes discussed in the text.

Fundamentals of Multiscale Modeling of Structural Materials

Fundamentals of Multiscale Modeling of Structural Materials
Author: Wenjie Xia,Luis Alberto Ruiz Pestana
Publsiher: Elsevier
Total Pages: 450
Release: 2022-11-26
Genre: Technology & Engineering
ISBN: 9780128230534

Download Fundamentals of Multiscale Modeling of Structural Materials Book in PDF, Epub and Kindle

Fundamentals of Multiscale Modeling of Structural Materials provides a robust introduction to the computational tools, underlying theory, practical applications, and governing physical phenomena necessary to simulate and understand a wide-range of structural materials at multiple time and length scales. The book offers practical guidelines for modeling common structural materials with well-established techniques, outlining detailed modeling approaches for calculating and analyzing mechanical, thermal and transport properties of various structural materials such as metals, cement/concrete, polymers, composites, wood, thin films, and more.Computational approaches based on artificial intelligence and machine learning methods as complementary tools to the physics-based multiscale techniques are discussed as are modeling techniques for additively manufactured structural materials. Special attention is paid to how these methods can be used to develop the next generation of sustainable, resilient and environmentally-friendly structural materials, with a specific emphasis on bridging the atomistic and continuum modeling scales for these materials. Synthesizes the latest cutting-edge computational multiscale modeling techniques for an array of structural materials Emphasizes the foundations of the field and offers practical guidelines for modeling material systems with well-established techniques Covers methods for calculating and analyzing mechanical, thermal and transport properties of various structural materials such as metals, cement/concrete, polymers, composites, wood, and more Highlights underlying theory, emerging areas, future directions and various applications of the modeling methods covered Discusses the integration of multiscale modeling and artificial intelligence

Fatigue in Additive Manufactured Metals

Fatigue in Additive Manufactured Metals
Author: Filippo Berto,Anton Du Plessis
Publsiher: Elsevier
Total Pages: 321
Release: 2023-10-01
Genre: Technology & Engineering
ISBN: 9780323998314

Download Fatigue in Additive Manufactured Metals Book in PDF, Epub and Kindle

Fatigue in Additive Manufactured Metals provides a brief overview of the fundamental mechanics involved in metal fatigue and fracture, assesses the unique properties of additive manufactured metals, and provides an in-depth exploration of how and why fatigue occurs in additive manufactured metals. Additional sections cover solutions for preventing it, best-practice design methods, and more. The book recommends cutting-edge evidence-based approaches for designing longer lasting additive manufactured metals, discusses the latest trends in the field and the various aspects of low cycle fatigue, and looks at both post-treatment and manufacturing process-based solutions. By providing international standards and testing procedures of additive manufactured metal parts and discussing the environmental impacts of additive manufacturing of metals and outlining simulation and modeling scenarios, this book is an ideal resource for users in industry. Discusses the underlying mechanisms controlling the fatigue behavior of additive manufactured metal components as well as how to improve the fatigue life of these components via both manufacturing processes and post-processing Studies the variability of properties in additive manufactured metals, the effects of different process conditions on mechanical reliability, probabilistic versus deterministic aspects, and more Outlines nondestructive failure analysis techniques and highlights the effects of unique microstructural characteristics on fatigue in additive manufactured metals

Metal Additive Manufacturing

Metal Additive Manufacturing
Author: Dyuti Sarker,Ehsan Toyserkani,Osezua Obehi Ibhadode,Farzad Liravi,Paola Russo,Katayoon Taherkhani
Publsiher: John Wiley & Sons
Total Pages: 624
Release: 2021-10-26
Genre: Science
ISBN: 9781119210832

Download Metal Additive Manufacturing Book in PDF, Epub and Kindle

METAL ADDITIVE MANUFACTURING A comprehensive review of additive manufacturing processes for metallic structures Additive Manufacturing (AM)—also commonly referred to as 3D printing—builds three-dimensional objects by adding materials layer by layer. Recent years have seen unprecedented investment in additive manufacturing research and development by governments and corporations worldwide. This technology has the potential to replace many conventional manufacturing processes, enable the development of new industry practices, and transform the entire manufacturing enterprise. Metal Additive Manufacturing provides an up-to-date review of all essential physics of metal additive manufacturing techniques with emphasis on both laser-based and non-laser-based additive manufacturing processes. This comprehensive volume covers fundamental processes and equipment, governing physics and modelling, design and topology optimization, and more. The text adresses introductory, intermediate, and advanced topics ranging from basic additive manufacturing process classification to practical and material design aspects of additive manufacturability. Written by a panel of expert authors in the field, this authoritative resource: Provides a thorough analysis of AM processes and their theoretical foundations Explains the classification, advantages, and applications of AM processes Describes the equipment required for different AM processes for metallic structures, including laser technologies, positioning devices, feeder and spreader mechanisms, and CAD software Discusses the opportunities, challenges, and current and emerging trends within the field Covers practical considerations, including design for AM, safety, quality assurance, automation, and real-time control of AM processes Includes illustrative cases studies and numerous figures and tables Featuring material drawn from the lead author’s research and professional experience on laser additive manufacturing, Metal Additive Manufacturing is an important source for manufacturing professionals, research and development engineers in the additive industry, and students and researchers involved in mechanical, mechatronics, automatic control, and materials engineering and science.

Data Driven Modeling for Additive Manufacturing of Metals

Data Driven Modeling for Additive Manufacturing of Metals
Author: National Academies of Sciences, Engineering, and Medicine,Division on Engineering and Physical Sciences,National Materials and Manufacturing Board,Board on Mathematical Sciences and Analytics
Publsiher: National Academies Press
Total Pages: 79
Release: 2019-11-09
Genre: Technology & Engineering
ISBN: 9780309494205

Download Data Driven Modeling for Additive Manufacturing of Metals Book in PDF, Epub and Kindle

Additive manufacturing (AM) is the process in which a three-dimensional object is built by adding subsequent layers of materials. AM enables novel material compositions and shapes, often without the need for specialized tooling. This technology has the potential to revolutionize how mechanical parts are created, tested, and certified. However, successful real-time AM design requires the integration of complex systems and often necessitates expertise across domains. Simulation-based design approaches, such as those applied in engineering product design and material design, have the potential to improve AM predictive modeling capabilities, particularly when combined with existing knowledge of the underlying mechanics. These predictive models have the potential to reduce the cost of and time for concept-to-final-product development and can be used to supplement experimental tests. The National Academies convened a workshop on October 24-26, 2018 to discuss the frontiers of mechanistic data-driven modeling for AM of metals. Topics of discussion included measuring and modeling process monitoring and control, developing models to represent microstructure evolution, alloy design, and part suitability, modeling phases of process and machine design, and accelerating product and process qualification and certification. These topics then led to the assessment of short-, immediate-, and long-term challenges in AM. This publication summarizes the presentations and discussions from the workshop.

Modeling and Optimization in Manufacturing

Modeling and Optimization in Manufacturing
Author: Catalin I. Pruncu,Jun Jiang
Publsiher: John Wiley & Sons
Total Pages: 338
Release: 2021-07-19
Genre: Technology & Engineering
ISBN: 9783527346943

Download Modeling and Optimization in Manufacturing Book in PDF, Epub and Kindle

Discover the state-of-the-art in multiscale modeling and optimization in manufacturing from two leading voices in the field Modeling and Optimization in Manufacturing delivers a comprehensive approach to various manufacturing processes and shows readers how multiscale modeling and optimization processes help improve upon them. The book elaborates on the foundations and applications of computational modeling and optimization processes, as well as recent developments in the field. It offers discussions of manufacturing processes, including forming, machining, casting, joining, coating, and additive manufacturing, and how computer simulations have influenced their development. Examples for each category of manufacturing are provided in the text, and industrial applications are described for the reader. The distinguished authors also provide an insightful perspective on likely future trends and developments in manufacturing modeling and optimization, including the use of large materials databases and machine learning. Readers will also benefit from the inclusion of: A thorough introduction to the origins of manufacturing, the history of traditional and advanced manufacturing, and recent progress in manufacturing An exploration of advanced manufacturing and the environmental impact and significance of manufacturing Practical discussions of the economic importance of advanced manufacturing An examination of the sustainability of advanced manufacturing, and developing and future trends in manufacturing Perfect for materials scientists, mechanical engineers, and process engineers, Modeling and Optimization in Manufacturing will also earn a place in the libraries of engineering scientists in industries seeking a one-stop reference on multiscale modeling and optimization in manufacturing.