Non Fourier Heat Conduction

Non Fourier Heat Conduction
Author: Alexander I. Zhmakin
Publsiher: Unknown
Total Pages: 0
Release: 2023
Genre: Electronic Book
ISBN: 3031259750

Download Non Fourier Heat Conduction Book in PDF, Epub and Kindle

This book presents a broad and well-structured overview of various non-Fourier heat conduction models. The classical Fourier heat conduction model is valid for most macroscopic problems. However, it fails when the wave nature of the heat propagation becomes dominant and memory or non-local spatial effects become significant; e.g., during ultrafast heating, heat transfer at the nanoscale, in granular and porous materials, at extremely high values of the heat flux, or in heat transfer in biological tissues. The book looks at numerous non-Fourier heat conduction models that incorporate time non-locality for materials with memory, such as hereditary materials, including fractional hereditary materials, and/or spatial non-locality, i.e. materials with a non-homogeneous inner structure. Beginning with an introduction to classical transport theory, including phase-lag, phonon, and thermomass models, the book then looks at various aspects of relativistic and quantum transport, including approaches based on the Landauer formalism as well as the Green-Kubo theory of linear response. Featuring an appendix that provides an introduction to methods in fractional calculus, this book is a valuable resource for any researcher interested in theoretical and numerical aspects of complex, non-trivial heat conduction problems.

Advanced Thermal Stress Analysis of Smart Materials and Structures

Advanced Thermal Stress Analysis of Smart Materials and Structures
Author: Zengtao Chen,Abdolhamid Akbarzadeh
Publsiher: Springer Nature
Total Pages: 304
Release: 2019-09-03
Genre: Science
ISBN: 9783030252014

Download Advanced Thermal Stress Analysis of Smart Materials and Structures Book in PDF, Epub and Kindle

This is the first single volume monograph that systematically summarizes the recent progress in using non-Fourier heat conduction theories to deal with the multiphysical behaviour of smart materials and structures. The book contains six chapters and starts with a brief introduction to Fourier and non-Fourier heat conduction theories. Non-Fourier heat conduction theories include Cattaneo-Vernotte, dual-phase-lag (DPL), three-phase-lag (TPL), fractional phase-lag, and nonlocal phase-lag heat theories. Then, the fundamentals of thermal wave characteristics are introduced through reviewing the methods for solving non-Fourier heat conduction theories and by presenting transient heat transport in representative homogeneous and advanced heterogeneous materials. The book provides the fundamentals of smart materials and structures, including the background, application, and governing equations. In particular, functionally-graded smart structures made of piezoelectric, piezomagnetic, and magnetoelectroelastic materials are introduced as they represent the recent development in the industry. A series of uncoupled thermal stress analyses on one-dimensional structures are also included. The volume ends with coupled thermal stress analyses of one-dimensional homogenous and heterogeneous smart piezoelectric structures considering different coupled thermopiezoelectric theories. Last but not least, fracture behavior of smart structures under thermal disturbance is investigated and the authors propose directions for future research on the topic of multiphysical analysis of smart materials.

Theoretical and Experimental Studies on Non Fourier Heat Conduction Based on Thermomass Theory

Theoretical and Experimental Studies on Non Fourier Heat Conduction Based on Thermomass Theory
Author: Hai-Dong Wang
Publsiher: Springer Science & Business Media
Total Pages: 112
Release: 2014-02-07
Genre: Science
ISBN: 9783642539770

Download Theoretical and Experimental Studies on Non Fourier Heat Conduction Based on Thermomass Theory Book in PDF, Epub and Kindle

This book mainly focuses on the theoretical and experimental study of non-Fourier heat conduction behavior. A novel thermomass theory is used as the theoretical basis, which provides a general heat conduction equation for the accurate prediction of non-Fourier heat conduction. In order to prove the validity of this thermomass theory, a large current was used to heat the metallic nanofilm at the minimum temperature of 3 K. The measured average temperature of the nanofilm was notably higher than the prediction of Fourier’s heat diffusion equation, while matching well with the general heat conduction equation. This is the first time that steady non-Fourier heat conduction has been observed. Moreover, this book concerns the role of electron-phonon interaction in metallic nanofilms, which involves the breakdown of the Wiedemann-Franz law at low temperatures and interfacial thermal resistance at femtosecond timescales. Readers will find useful information on non-Fourier heat conduction and the latest advances in the study of charge and heat transport in metallic nanofilms.

Dynamical Analysis of Non Fourier Heat Conduction and Its Application in Nanosystems

Dynamical Analysis of Non Fourier Heat Conduction and Its Application in Nanosystems
Author: Yuan Dong
Publsiher: Springer
Total Pages: 134
Release: 2015-10-14
Genre: Science
ISBN: 9783662484852

Download Dynamical Analysis of Non Fourier Heat Conduction and Its Application in Nanosystems Book in PDF, Epub and Kindle

This thesis studies the general heat conduction law, irreversible thermodynamics and the size effect of thermal conductivity exhibited in nanosystems from the perspective of recently developed thermomass theory. The derivation bridges the microscopic phonon Boltzmann equation and macroscopic continuum mechanics. Key concepts such as entropy production, temperature and the Onsager reciprocal relation are revisited in the case of non-Fourier heat conduction. Lastly, useful expressions are extracted from the picture of phonon gas dynamics and are used to successfully predict effective thermal conductivity in nanosystems.

Non Fourier Heat Conduction

Non Fourier Heat Conduction
Author: Alexander I. Zhmakin
Publsiher: Springer Nature
Total Pages: 419
Release: 2023-07-01
Genre: Science
ISBN: 9783031259739

Download Non Fourier Heat Conduction Book in PDF, Epub and Kindle

This book presents a broad and well-structured overview of various non-Fourier heat conduction models. The classical Fourier heat conduction model is valid for most macroscopic problems. However, it fails when the wave nature of the heat propagation becomes dominant and memory or non-local spatial effects become significant; e.g., during ultrafast heating, heat transfer at the nanoscale, in granular and porous materials, at extremely high values of the heat flux, or in heat transfer in biological tissues. The book looks at numerous non-Fourier heat conduction models that incorporate time non-locality for materials with memory, such as hereditary materials, including fractional hereditary materials, and/or spatial non-locality, i.e. materials with a non-homogeneous inner structure. Beginning with an introduction to classical transport theory, including phase-lag, phonon, and thermomass models, the book then looks at various aspects of relativistic and quantum transport, including approaches based on the Landauer formalism as well as the Green-Kubo theory of linear response. Featuring an appendix that provides an introduction to methods in fractional calculus, this book is a valuable resource for any researcher interested in theoretical and numerical aspects of complex, non-trivial heat conduction problems.

Macro to Microscale Heat Transfer

Macro  to Microscale Heat Transfer
Author: D. Y. Tzou
Publsiher: John Wiley & Sons
Total Pages: 576
Release: 2014-09-18
Genre: Technology & Engineering
ISBN: 9781118818268

Download Macro to Microscale Heat Transfer Book in PDF, Epub and Kindle

Physical processes taking place in micro/nanoscale strongly depend on the material types and can be very complicated. Known approaches include kinetic theory and quantum mechanics, non-equilibrium and irreversible thermodynamics, molecular dynamics, and/or fractal theory and fraction model. Due to innately different physical bases employed, different approaches may involve different physical properties in describing micro/nanoscale heat transport. In addition, the parameters involved in different approaches, may not be mutually inclusive. Macro- to Microscale Heat Transfer: The Lagging Behavior, Second Edition continues the well-received concept of thermal lagging through the revolutionary approach that focuses on the finite times required to complete the various physical processes in micro/nanoscale. Different physical processes in heat/mass transport imply different delay times, which are common regardless of the material type. The delay times, termed phase lags, are characteristics of materials. Therefore the dual-phase-lag model developed is able to describe eleven heat transfer models from macro to nanoscale in the same framework of thermal lagging. Recent extensions included are the lagging behavior in mass transport, as well as the nonlocal behavior in space, bearing the same merit of thermal lagging in time, in shrinking the ultrafast response down to the nanoscale. Key features: Takes a unified approach describing heat and mass transport from macro, micro to nanoscale Compares experimental results for model validation Includes easy to follow mathematical formulation Accompanied by a website hosting supporting material Macro- to Microscale Heat Transfer: The Lagging Behavior, Second Edition is a comprehensive reference for researchers and practitioners, and graduate students in mechanical, aerospace, biological and chemical engineering.

Extended Thermodynamics

Extended Thermodynamics
Author: Ingo Müller,Tommaso Ruggeri
Publsiher: Springer Science & Business Media
Total Pages: 238
Release: 2013-03-08
Genre: Science
ISBN: 9781468404470

Download Extended Thermodynamics Book in PDF, Epub and Kindle

Physicists firmly believe that the differential equations of nature should be hyperbolic so as to exclude action at a distance; yet the equations of irreversible thermodynamics - those of Navier-Stokes and Fourier - are parabolic. This incompatibility between the expectation of physicists and the classical laws of thermodynamics has prompted the formulation of extended thermodynamics. After describing the motifs and early evolution of this new branch of irreversible thermodynamics, the authors apply the theory to mon-atomic gases, mixtures of gases, relativistic gases, and "gases" of phonons and photons. The discussion brings into perspective the various phenomena called second sound, such as heat propagation, propagation of shear stress and concentration, and the second sound in liquid helium. The formal mathematical structure of extended thermodynamics is exposed and the theory is shown to be fully compatible with the kinetic theory of gases. The study closes with the testing of extended thermodynamics through the exploitation of its predictions for measurements of light scattering and sound propagation.

Theory of Periodic Conjugate Heat Transfer

Theory of Periodic Conjugate Heat Transfer
Author: Yuri B. Zudin
Publsiher: Springer
Total Pages: 301
Release: 2016-10-12
Genre: Science
ISBN: 9783662534458

Download Theory of Periodic Conjugate Heat Transfer Book in PDF, Epub and Kindle

This book provides a detailed yet comprehensive presentation of the theory of periodic conjugate heat transfer. It contains an analytical approach to the effects of thermophysical and geometrical properties of a solid body on the experimentally determined heat transfer coefficient. The main objective of the book is a simplified description of the interaction between a solid body and a fluid as a boundary value problem of the heat conduction equation.This third and extended edition covers Wall's thermal effect on Landau stability, gas bubbles pulsations in fluids, and also the interplay between periodic conjugate heat transfer and non-Fourier heat conduction. The target audience primarily comprises research experts in the field of thermodynamics and fluid dynamics, but the book may also be beneficial for graduate students in engineering.