Quantum Computing Without Magic

Quantum Computing Without Magic
Author: Zdzislaw Meglicki
Publsiher: MIT Press
Total Pages: 445
Release: 2008-08-01
Genre: Computers
ISBN: 9780262260978

Download Quantum Computing Without Magic Book in PDF, Epub and Kindle

How quantum computing is really done: a primer for future quantum device engineers. This text offers an introduction to quantum computing, with a special emphasis on basic quantum physics, experiment, and quantum devices. Unlike many other texts, which tend to emphasize algorithms, Quantum Computing Without Magic explains the requisite quantum physics in some depth, and then explains the devices themselves. It is a book for readers who, having already encountered quantum algorithms, may ask, “Yes, I can see how the algebra does the trick, but how can we actually do it?” By explaining the details in the context of the topics covered, this book strips the subject of the “magic” with which it is so often cloaked. Quantum Computing Without Magic covers the essential probability calculus; the qubit, its physics, manipulation and measurement, and how it can be implemented using superconducting electronics; quaternions and density operator formalism; unitary formalism and its application to Berry phase manipulation; the biqubit, the mysteries of entanglement, nonlocality, separability, biqubit classification, and the Schroedinger's Cat paradox; the controlled-NOT gate, its applications and implementations; and classical analogs of quantum devices and quantum processes. Quantum Computing Without Magic can be used as a complementary text for physics and electronic engineering undergraduates studying quantum computing and basic quantum mechanics, or as an introduction and guide for electronic engineers, mathematicians, computer scientists, or scholars in these fields who are interested in quantum computing and how it might fit into their research programs.

Quantum Computing Explained

Quantum Computing Explained
Author: David McMahon
Publsiher: John Wiley & Sons
Total Pages: 420
Release: 2007-12-14
Genre: Technology & Engineering
ISBN: 0470181362

Download Quantum Computing Explained Book in PDF, Epub and Kindle

A self-contained treatment of the fundamentals of quantum computing This clear, practical book takes quantum computing out of the realm of theoretical physics and teaches the fundamentals of the field to students and professionals who have not had training in quantum computing or quantum information theory, including computer scientists, programmers, electrical engineers, mathematicians, physics students, and chemists. The author cuts through the conventions of typical jargon-laden physics books and instead presents the material through his unique "how-to" approach and friendly, conversational style. Readers will learn how to carry out calculations with explicit details and will gain a fundamental grasp of: * Quantum mechanics * Quantum computation * Teleportation * Quantum cryptography * Entanglement * Quantum algorithms * Error correction A number of worked examples are included so readers can see how quantum computing is done with their own eyes, while answers to similar end-of-chapter problems are provided for readers to check their own work as they learn to master the information. Ideal for professionals and graduate-level students alike, Quantum Computing Explained delivers the fundamentals of quantum computing readers need to be able to understand current research papers and go on to study more advanced quantum texts.

Will We Ever Have a Quantum Computer

Will We Ever Have a Quantum Computer
Author: Mikhail I. Dyakonov
Publsiher: Springer Nature
Total Pages: 49
Release: 2020-03-23
Genre: Science
ISBN: 9783030420192

Download Will We Ever Have a Quantum Computer Book in PDF, Epub and Kindle

This book addresses a broad community of physicists, engineers, computer scientists and industry professionals, as well as the general public, who are aware of the unprecedented media hype surrounding the supposedly imminent new era of quantum computing. The central argument of this book is that the feasibility of quantum computing in the physical world is extremely doubtful. The hypothetical quantum computer is not simply a quantum variant of the conventional digital computer, but rather a quantum extension of a classical analog computer operating with continuous parameters. In order to have a useful machine, the number of continuous parameters to control would have to be of such an astronomically large magnitude as to render the endeavor virtually infeasible. This viewpoint is based on the author’s expert understanding of the gargantuan challenges that would have to be overcome to ever make quantum computing a reality. Knowledge of secondary-school-level physics and math will be sufficient for understanding most of the text.

Quantum Computing

Quantum Computing
Author: National Academies of Sciences, Engineering, and Medicine,Division on Engineering and Physical Sciences,Intelligence Community Studies Board,Computer Science and Telecommunications Board,Committee on Technical Assessment of the Feasibility and Implications of Quantum Computing
Publsiher: National Academies Press
Total Pages: 273
Release: 2019-04-27
Genre: Computers
ISBN: 9780309479691

Download Quantum Computing Book in PDF, Epub and Kindle

Quantum mechanics, the subfield of physics that describes the behavior of very small (quantum) particles, provides the basis for a new paradigm of computing. First proposed in the 1980s as a way to improve computational modeling of quantum systems, the field of quantum computing has recently garnered significant attention due to progress in building small-scale devices. However, significant technical advances will be required before a large-scale, practical quantum computer can be achieved. Quantum Computing: Progress and Prospects provides an introduction to the field, including the unique characteristics and constraints of the technology, and assesses the feasibility and implications of creating a functional quantum computer capable of addressing real-world problems. This report considers hardware and software requirements, quantum algorithms, drivers of advances in quantum computing and quantum devices, benchmarks associated with relevant use cases, the time and resources required, and how to assess the probability of success.

Learn Quantum Computing with Python and Q

Learn Quantum Computing with Python and Q
Author: Sarah C. Kaiser,Christopher Grenade
Publsiher: Simon and Schuster
Total Pages: 545
Release: 2021-07-27
Genre: Computers
ISBN: 9781638350903

Download Learn Quantum Computing with Python and Q Book in PDF, Epub and Kindle

Learn Quantum Computing with Python and Q# introduces quantum computing from a practical perspective. Summary Learn Quantum Computing with Python and Q# demystifies quantum computing. Using Python and the new quantum programming language Q#, you’ll build your own quantum simulator and apply quantum programming techniques to real-world examples including cryptography and chemical analysis. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Quantum computers present a radical leap in speed and computing power. Improved scientific simulations and new frontiers in cryptography that are impossible with classical computing may soon be in reach. Microsoft’s Quantum Development Kit and the Q# language give you the tools to experiment with quantum computing without knowing advanced math or theoretical physics. About the book Learn Quantum Computing with Python and Q# introduces quantum computing from a practical perspective. Use Python to build your own quantum simulator and take advantage of Microsoft’s open source tools to fine-tune quantum algorithms. The authors explain complex math and theory through stories, visuals, and games. You’ll learn to apply quantum to real-world applications, such as sending secret messages and solving chemistry problems. What's inside The underlying mechanics of quantum computers Simulating qubits in Python Exploring quantum algorithms with Q# Applying quantum computing to chemistry, arithmetic, and data About the reader For software developers. No prior experience with quantum computing required. About the author Dr. Sarah Kaiser works at the Unitary Fund, a non-profit organization supporting the quantum open-source ecosystem, and is an expert in building quantum tech in the lab. Dr. Christopher Granade works in the Quantum Systems group at Microsoft, and is an expert in characterizing quantum devices. Table of Contents PART 1 GETTING STARTED WITH QUANTUM 1 Introducing quantum computing 2 Qubits: The building blocks 3 Sharing secrets with quantum key distribution 4 Nonlocal games: Working with multiple qubits 5 Nonlocal games: Implementing a multi-qubit simulator 6 Teleportation and entanglement: Moving quantum data around PART 2 PROGRAMMING QUANTUM ALGORITHMS IN Q# 7 Changing the odds: An introduction to Q# 8 What is a quantum algorithm? 9 Quantum sensing: It’s not just a phase PART 3 APPLIED QUANTUM COMPUTING 10 Solving chemistry problems with quantum computers 11 Searching with quantum computers 12 Arithmetic with quantum computers

Quantum Computing

Quantum Computing
Author: Eleanor G. Rieffel,Wolfgang H. Polak
Publsiher: MIT Press
Total Pages: 389
Release: 2014-08-29
Genre: Computers
ISBN: 9780262526678

Download Quantum Computing Book in PDF, Epub and Kindle

A thorough exposition of quantum computing and the underlying concepts of quantum physics, with explanations of the relevant mathematics and numerous examples. The combination of two of the twentieth century's most influential and revolutionary scientific theories, information theory and quantum mechanics, gave rise to a radically new view of computing and information. Quantum information processing explores the implications of using quantum mechanics instead of classical mechanics to model information and its processing. Quantum computing is not about changing the physical substrate on which computation is done from classical to quantum but about changing the notion of computation itself, at the most basic level. The fundamental unit of computation is no longer the bit but the quantum bit or qubit. This comprehensive introduction to the field offers a thorough exposition of quantum computing and the underlying concepts of quantum physics, explaining all the relevant mathematics and offering numerous examples. With its careful development of concepts and thorough explanations, the book makes quantum computing accessible to students and professionals in mathematics, computer science, and engineering. A reader with no prior knowledge of quantum physics (but with sufficient knowledge of linear algebra) will be able to gain a fluent understanding by working through the book.

Quantum Computing in Action

Quantum Computing in Action
Author: Johan Vos
Publsiher: Simon and Schuster
Total Pages: 264
Release: 2022-03-22
Genre: Computers
ISBN: 9781638350941

Download Quantum Computing in Action Book in PDF, Epub and Kindle

Quantum computing is on the horizon and you can get started today! This practical, clear-spoken guide shows you don’t need a physics degree to write your first quantum software. In Quantum Computing in Action you will learn: An introduction to the core concepts of quantum computing Qubits and quantum gates Superposition, entanglement, and hybrid computing Quantum algorithms including Shor’s, Deutsch-jozsa, and Grover’s search Quantum Computing in Action shows you how to leverage your existing Java skills into writing your first quantum software, so you’re ready for the quantum revolution. This book is focused on practical implementations of quantum computing algorithms—there’s no deep math or confusing theory. Using Strange, a Java-based quantum computer simulator, you’ll go hands-on with quantum computing’s core components including qubits and quantum gates. About the technology Quantum computing promises unimaginably fast performance for tasks like encryption, scientific modeling, manufacturing logistics, financial modeling, and AI. Developers can explore quantum computing now using free simulators, and increasingly powerful true quantum systems are gradually becoming available for production use. This book gives you a head start on quantum computing by introducing core concepts, key algorithms, and the most beneficial use cases. About the book Quantum Computing in Action is a gentle introduction to the ideas and applications of quantum computing. After briefly reviewing the science that makes quantum tick, it guides you through practical implementations of quantum computing algorithms. You’ll write your first quantum code and explore qubits and quantum gates with the Java-based Strange quantum simulator. You’ll enjoy the interesting examples and insightful explanations as you create quantum algorithms using standard Java and your favorite IDE and build tools. What's inside An introduction to the core concepts of quantum computing Qubits and quantum gates Superposition, entanglement, and hybrid computing Quantum algorithms including Shor’s, Deutsch-jozsa, and Grover’s search About the reader For Java developers. No advanced math knowledge required. About the author Johan Vos is a cofounder of Gluon, a Java technology company. He is a Java Champion and holds an MSc in Mining Engineering and a PhD in Applied Physics. Table of Contents PART 1 QUANTUM COMPUTING INTRODUCTION 1 Evolution, revolution, or hype? 2 “Hello World,” quantum computing style 3 Qubits and quantum gates: The basic units in quantum computing PART 2 FUNDAMENTAL CONCEPTS AND HOW THEY RELATE TO CODE 4 Superposition 5 Entanglement 6 Quantum networking: The basics PART 3 QUANTUM ALGORITHMS AND CODE 7 Our HelloWorld, explained 8 Secure communication using quantum computing 9 Deutsch-Jozsa algorithm 10 Grover’s search algorithm 11 Shor’s algorithm

Quantum Computing

Quantum Computing
Author: Brian Clegg
Publsiher: Icon Books
Total Pages: 177
Release: 2021-05-06
Genre: Science
ISBN: 9781785787089

Download Quantum Computing Book in PDF, Epub and Kindle

The ultimate non-technical guide to the fast-developing world of quantum computing Computer technology has improved exponentially over the last 50 years. But the headroom for bigger and better electronic solutions is running out. Our best hope is to engage the power of quantum physics. 'Quantum algorithms' had already been written long before hardware was built. These would enable, for example, a quantum computer to exponentially speed up an information search, or to crack the mathematical trick behind internet security. However, making a quantum computer is incredibly difficult. Despite hundreds of laboratories around the world working on them, we are only just seeing them come close to 'supremacy' where they can outperform a traditional computer. In this approachable introduction, Brian Clegg explains algorithms and their quantum counterparts, explores the physical building blocks and quantum weirdness necessary to make a quantum computer, and uncovers the capabilities of the current generation of machines.