Quantum Error Correction and Fault Tolerant Quantum Computing

Quantum Error Correction and Fault Tolerant Quantum Computing
Author: Frank Gaitan
Publsiher: CRC Press
Total Pages: 312
Release: 2018-10-03
Genre: Computers
ISBN: 9781420006681

Download Quantum Error Correction and Fault Tolerant Quantum Computing Book in PDF, Epub and Kindle

It was once widely believed that quantum computation would never become a reality. However, the discovery of quantum error correction and the proof of the accuracy threshold theorem nearly ten years ago gave rise to extensive development and research aimed at creating a working, scalable quantum computer. Over a decade has passed since this monumental accomplishment yet no book-length pedagogical presentation of this important theory exists. Quantum Error Correction and Fault Tolerant Quantum Computing offers the first full-length exposition on the realization of a theory once thought impossible. It provides in-depth coverage on the most important class of codes discovered to date—quantum stabilizer codes. It brings together the central themes of quantum error correction and fault-tolerant procedures to prove the accuracy threshold theorem for a particular noise error model. The author also includes a derivation of well-known bounds on the parameters of quantum error correcting code. Packed with over 40 real-world problems, 35 field exercises, and 17 worked-out examples, this book is the essential resource for any researcher interested in entering the quantum field as well as for those who want to understand how the unexpected realization of quantum computing is possible.

Quantum Error Correction and Fault Tolerant Quantum Computing S

Quantum Error Correction and Fault Tolerant Quantum Computing   S
Author: Gaitan Frank Staff
Publsiher: Unknown
Total Pages: 135
Release: 2007-10
Genre: Electronic Book
ISBN: 1420073451

Download Quantum Error Correction and Fault Tolerant Quantum Computing S Book in PDF, Epub and Kindle

It was once widely believed that quantum computation would never become a reality. However, the discovery of quantum error correction and the proof of the accuracy threshold theorem nearly ten years ago gave rise to extensive development and research aimed at creating a working, scalable quantum computer. Over a decade has passed since this monumental accomplishment yet no book-length pedagogical presentation of this important theory exists. Quantum Error Correction and Fault Tolerant Quantum Computing offers the first full-length exposition on the realization of a theory once thought impossible. It provides in-depth coverage on the most important class of codes discovered to date quantum stabilizer codes. It brings together the central themes of quantum error correction and fault-tolerant procedures to prove the accuracy threshold theorem for a particular noise error model. The author also includes a derivation of well-known bounds on the parameters of quantum error correcting code. Packed with over 40 real-world problems, 35 field exercises, and 17 worked-out examples, this book is the essential resource for any researcher interested in entering the quantum field as well as for those who want to understand how the unexpected realization of quantum computing is possible.

Quantum Information Processing and Quantum Error Correction

Quantum Information Processing and Quantum Error Correction
Author: Ivan Djordjevic
Publsiher: Academic Press
Total Pages: 597
Release: 2012-04-16
Genre: Computers
ISBN: 9780123854919

Download Quantum Information Processing and Quantum Error Correction Book in PDF, Epub and Kindle

Quantum Information Processing and Quantum Error Correction is a self-contained, tutorial-based introduction to quantum information, quantum computation, and quantum error-correction. Assuming no knowledge of quantum mechanics and written at an intuitive level suitable for the engineer, the book gives all the essential principles needed to design and implement quantum electronic and photonic circuits. Numerous examples from a wide area of application are given to show how the principles can be implemented in practice. This book is ideal for the electronics, photonics and computer engineer who requires an easy- to-understand foundation on the principles of quantum information processing and quantum error correction, together with insight into how to develop quantum electronic and photonic circuits. Readers of this book will be ready for further study in this area, and will be prepared to perform independent research. The reader completed the book will be able design the information processing circuits, stabilizer codes, Calderbank-Shor-Steane (CSS) codes, subsystem codes, topological codes and entanglement-assisted quantum error correction codes; and propose corresponding physical implementation. The reader completed the book will be proficient in quantum fault-tolerant design as well. Unique Features Unique in covering both quantum information processing and quantum error correction - everything in one book that an engineer needs to understand and implement quantum-level circuits. Gives an intuitive understanding by not assuming knowledge of quantum mechanics, thereby avoiding heavy mathematics. In-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits. Provides the right balance among the quantum mechanics, quantum error correction, quantum computing and quantum communication. Dr. Djordjevic is an Assistant Professor in the Department of Electrical and Computer Engineering of College of Engineering, University of Arizona, with a joint appointment in the College of Optical Sciences. Prior to this appointment in August 2006, he was with University of Arizona, Tucson, USA (as a Research Assistant Professor); University of the West of England, Bristol, UK; University of Bristol, Bristol, UK; Tyco Telecommunications, Eatontown, USA; and National Technical University of Athens, Athens, Greece. His current research interests include optical networks, error control coding, constrained coding, coded modulation, turbo equalization, OFDM applications, and quantum error correction. He presently directs the Optical Communications Systems Laboratory (OCSL) within the ECE Department at the University of Arizona. Provides everything an engineer needs in one tutorial-based introduction to understand and implement quantum-level circuits Avoids the heavy use of mathematics by not assuming the previous knowledge of quantum mechanics Provides in-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits

Quantum Error Correction

Quantum Error Correction
Author: Daniel A. Lidar,Todd A. Brun
Publsiher: Cambridge University Press
Total Pages: 689
Release: 2013-09-12
Genre: Computers
ISBN: 9780521897877

Download Quantum Error Correction Book in PDF, Epub and Kindle

Focusing on methods for quantum error correction, this book is invaluable for graduate students and experts in quantum information science.

Quantum Computing and Quantum Communications

Quantum Computing and Quantum Communications
Author: Colin P. Williams
Publsiher: Springer
Total Pages: 480
Release: 2003-05-20
Genre: Computers
ISBN: 9783540492085

Download Quantum Computing and Quantum Communications Book in PDF, Epub and Kindle

This book contains selected papers presented at the First NASA International Conference on Quantum Computing and Quantum Communications, QCQC'98, held in Palm Springs, California, USA in February 1998. As the record of the first large-scale meeting entirely devoted to quantum computing and communications, this book is a unique survey of the state-of-the-art in the area. The 43 carefully reviewed papers are organized in topical sections on entanglement and quantum algorithms, quantum cryptography, quantum copying and quantum information theory, quantum error correction and fault-tolerant quantum computing, and embodiments of quantum computers.

Quantum Error Correction

Quantum Error Correction
Author: Daniel A. Lidar,Todd A. Brun
Publsiher: Cambridge University Press
Total Pages: 689
Release: 2013-09-12
Genre: Science
ISBN: 9781107433830

Download Quantum Error Correction Book in PDF, Epub and Kindle

Quantum computation and information is one of the most exciting developments in science and technology of the last twenty years. To achieve large scale quantum computers and communication networks it is essential not only to overcome noise in stored quantum information, but also in general faulty quantum operations. Scalable quantum computers require a far-reaching theory of fault-tolerant quantum computation. This comprehensive text, written by leading experts in the field, focuses on quantum error correction and thoroughly covers the theory as well as experimental and practical issues. The book is not limited to a single approach, but reviews many different methods to control quantum errors, including topological codes, dynamical decoupling and decoherence-free subspaces. Basic subjects as well as advanced theory and a survey of topics from cutting-edge research make this book invaluable both as a pedagogical introduction at the graduate level and as a reference for experts in quantum information science.

Quantum Computation with Topological Codes

Quantum Computation with Topological Codes
Author: Keisuke Fujii
Publsiher: Springer
Total Pages: 138
Release: 2015-12-15
Genre: Science
ISBN: 9789812879967

Download Quantum Computation with Topological Codes Book in PDF, Epub and Kindle

This book presents a self-consistent review of quantum computation with topological quantum codes. The book covers everything required to understand topological fault-tolerant quantum computation, ranging from the definition of the surface code to topological quantum error correction and topological fault-tolerant operations. The underlying basic concepts and powerful tools, such as universal quantum computation, quantum algorithms, stabilizer formalism, and measurement-based quantum computation, are also introduced in a self-consistent way. The interdisciplinary fields between quantum information and other fields of physics such as condensed matter physics and statistical physics are also explored in terms of the topological quantum codes. This book thus provides the first comprehensive description of the whole picture of topological quantum codes and quantum computation with them.

The Complexity of Noise

The Complexity of Noise
Author: Amit Hagar
Publsiher: Morgan & Claypool Publishers
Total Pages: 71
Release: 2010
Genre: Computers
ISBN: 9781608454891

Download The Complexity of Noise Book in PDF, Epub and Kindle

Quantum computers are hypothetical quantum information processing (QIP) devices that allow one to store, manipulate, and extract information while harnessing quantum physics to solve various computational problems and do so putatively more efficiently than any known classical counterpart (5). Physical objects as they are, QIP devices are subject to the laws of physics. No doubt, the application of these laws is error-free, but noise - be it external influences or hardware imprecisions - can sometimes cause a mismatch between what the QIP device is supposed to do and what it actually does. In recent years the elimination of noise that result from external disturbances or from imperfect gates has become the "holy grail" within the quantum computing community, and a worldwide quest for a large scale, fault-tolerant, and computationally superior QIP device is currently taking place. Whether such machines are possible is an exciting open question, yet the debate on their feasibility has been so far rather ideological in character (45) (66)(110) (162). Remarkably, philosophers of science have been mostly silent about it: common wisdom has it that philosophy should not intervene in what appears to be (and is also presented as) an engineering problem, and besides, the mathematics employed in the theory of fault-tolerant quantum error correction (FTQEC henceforth) is rather daunting. It turns out, however, that behind this technical veil the central issues at the heart of the debate are worthy of philosophical analysis and, moreover, bear strong similarities to the conceptual problems that have been saturating a field quite familiar to philosophers, namely the foundations of statistical mechanics (SM henceforth). Reconstructing the debate on FTQEC with statistical mechanical analogies, this book aims to introduce it to readership outside the quantum computing community, and to take preliminary steps towards making it less ideological and mor