Quantum Optics with Semiconductor Nanostructures

Quantum Optics with Semiconductor Nanostructures
Author: Frank Jahnke
Publsiher: Elsevier
Total Pages: 602
Release: 2012-07-16
Genre: Technology & Engineering
ISBN: 9780857096395

Download Quantum Optics with Semiconductor Nanostructures Book in PDF, Epub and Kindle

An understanding of the interaction between light and matter on a quantum level is of fundamental interest and has many applications in optical technologies. The quantum nature of the interaction has recently attracted great attention for applications of semiconductor nanostructures in quantum information processing. Quantum optics with semiconductor nanostructures is a key guide to the theory, experimental realisation, and future potential of semiconductor nanostructures in the exploration of quantum optics. Part one provides a comprehensive overview of single quantum dot systems, beginning with a look at resonance fluorescence emission. Quantum optics with single quantum dots in photonic crystal and micro cavities are explored in detail, before part two goes on to review nanolasers with quantum dot emitters. Light-matter interaction in semiconductor nanostructures, including photon statistics and photoluminescence, is the focus of part three, whilst part four explores all-solid-state quantum optics, crystal nanobeam cavities and quantum-dot microcavity systems. Finally, part five investigates ultrafast phenomena, including femtosecond quantum optics and coherent optoelectronics with quantum dots. With its distinguished editor and international team of expert contributors, Quantum optics with semiconductor nanostructures is an essential guide for all those involved with the research, development, manufacture and use of semiconductors nanodevices, lasers and optical components, as well as scientists, researchers and students. A key guide to the theory, experimental realisation, and future potential of semiconductor nanostructures in the exploration of quantum optics Chapters provide a comprehensive overview of single quantum dot systems, nanolasers with quantum dot emitters, and light-matter interaction in semiconductor nanostructures Explores all-solid-state quantum optics, crystal nanobeam cavities and quantum-dot microcavity systems, and investigates ultrafast phenomena

Optical Generation and Control of Quantum Coherence in Semiconductor Nanostructures

Optical Generation and Control of Quantum Coherence in Semiconductor Nanostructures
Author: Gabriela Slavcheva,Philippe Roussignol
Publsiher: Springer Science & Business Media
Total Pages: 338
Release: 2010-06-01
Genre: Science
ISBN: 9783642124914

Download Optical Generation and Control of Quantum Coherence in Semiconductor Nanostructures Book in PDF, Epub and Kindle

The fundamental concept of quantum coherence plays a central role in quantum physics, cutting across disciplines of quantum optics, atomic and condensed matter physics. Quantum coherence represents a universal property of the quantum s- tems that applies both to light and matter thereby tying together materials and p- nomena. Moreover, the optical coherence can be transferred to the medium through the light-matter interactions. Since the early days of quantum mechanics there has been a desire to control dynamics of quantum systems. The generation and c- trol of quantum coherence in matter by optical means, in particular, represents a viable way to achieve this longstanding goal and semiconductor nanostructures are the most promising candidates for controllable quantum systems. Optical generation and control of coherent light-matter states in semiconductor quantum nanostructures is precisely the scope of the present book. Recently, there has been a great deal of interest in the subject of quantum coh- ence. We are currently witnessing parallel growth of activities in different physical systems that are all built around the central concept of manipulation of quantum coherence. The burgeoning activities in solid-state systems, and semiconductors in particular, have been strongly driven by the unprecedented control of coherence that previously has been demonstrated in quantum optics of atoms and molecules, and is now taking advantage of the remarkable advances in semiconductor fabrication technologies. A recent impetus to exploit the coherent quantum phenomena comes from the emergence of the quantum information paradigm.

Semiconductor Quantum Optics

Semiconductor Quantum Optics
Author: Mackillo Kira,Stephan W. Koch
Publsiher: Cambridge University Press
Total Pages: 658
Release: 2011-11-17
Genre: Science
ISBN: 9781139502511

Download Semiconductor Quantum Optics Book in PDF, Epub and Kindle

The emerging field of semiconductor quantum optics combines semiconductor physics and quantum optics, with the aim of developing quantum devices with unprecedented performance. In this book researchers and graduate students alike will reach a new level of understanding to begin conducting state-of-the-art investigations. The book combines theoretical methods from quantum optics and solid-state physics to give a consistent microscopic description of light-matter- and many-body-interaction effects in low-dimensional semiconductor nanostructures. It develops the systematic theory needed to treat semiconductor quantum-optical effects, such as strong light-matter coupling, light-matter entanglement, squeezing, as well as quantum-optical semiconductor spectroscopy. Detailed derivations of key equations help readers learn the techniques and nearly 300 exercises help test their understanding of the materials covered. The book is accompanied by a website hosted by the authors, containing further discussions on topical issues, latest trends and publications on the field. The link can be found at www.cambridge.org/9780521875097.

Quantum Coherence Correlation and Decoherence in Semiconductor Nanostructures

Quantum Coherence Correlation and Decoherence in Semiconductor Nanostructures
Author: Toshihide Takagahara
Publsiher: Academic Press
Total Pages: 496
Release: 2003-02-10
Genre: Science
ISBN: 9780080525129

Download Quantum Coherence Correlation and Decoherence in Semiconductor Nanostructures Book in PDF, Epub and Kindle

Semiconductor nanostructures are attracting a great deal of interest as the most promising device with which to implement quantum information processing and quantum computing. This book surveys the present status of nanofabrication techniques, near field spectroscopy and microscopy to assist the fabricated nanostructures. It will be essential reading for academic and industrial researchers in pure and applied physics, optics, semiconductors and microelectronics. The first up-to-date review articles on various aspects on quantum coherence, correlation and decoherence in semiconductor nanostructures

Optical Spectroscopy of Semiconductor Nanostructures

Optical Spectroscopy of Semiconductor Nanostructures
Author: Eougenious L. Ivchenko
Publsiher: Alpha Science Int'l Ltd.
Total Pages: 444
Release: 2005
Genre: Science
ISBN: 1842651501

Download Optical Spectroscopy of Semiconductor Nanostructures Book in PDF, Epub and Kindle

This volume looks at optical spectroscopy of semiconductir nanostructures. Some of the topics it covers include: kingdom of nanostructures; quantum confinement in low-dimensional systems; resonant light reflection; and transmission and absorption.

Semiconductor Quantum Bits

Semiconductor Quantum Bits
Author: Oliver Benson,Fritz Henneberger
Publsiher: Pan Stanford Publishing
Total Pages: 515
Release: 2009
Genre: Science
ISBN: 9789814241052

Download Semiconductor Quantum Bits Book in PDF, Epub and Kindle

This book highlights state-of-the-art qubit implementations in semiconductors and provides an extensive overview of this newly emerging field. Semiconductor nanostructures have huge potential as future quantum information devices as they provide various ways of qubit implementation (electron spin, electronic excitation) as well as a way to transfer quantum information from stationary qubits to flying qubits (photons). Therefore, this book unites contributions from leading experts in the field, reporting cutting-edge results on spin qubit preparation, read-out and transfer. The latest theoretical as well as experimental studies of decoherence in these quantum information systems are also provided. Novel demonstrations of complex flying qubit states and first applications of semiconductor-based quantum information devices are given, too.

Quantum Wells Wires and Dots

Quantum Wells  Wires and Dots
Author: Paul Harrison
Publsiher: John Wiley & Sons
Total Pages: 564
Release: 2011-09-26
Genre: Science
ISBN: 9781119964759

Download Quantum Wells Wires and Dots Book in PDF, Epub and Kindle

Quantum Wells, Wires and Dots, 3rd Edition is aimed at providing all the essential information, both theoretical and computational, in order that the reader can, starting from essentially nothing, understand how the electronic, optical and transport properties of semiconductor heterostructures are calculated. Completely revised and updated, this text is designed to lead the reader through a series of simple theoretical and computational implementations, and slowly build from solid foundations, to a level where the reader can begin to initiate theoretical investigations or explanations of their own.

Quantum Wells Wires and Dots

Quantum Wells  Wires and Dots
Author: Paul Harrison,Alex Valavanis
Publsiher: John Wiley & Sons
Total Pages: 624
Release: 2016-04-26
Genre: Science
ISBN: 9781118923351

Download Quantum Wells Wires and Dots Book in PDF, Epub and Kindle

Quantum Wells, Wires and Dots provides all the essential information, both theoretical and computational, to develop an understanding of the electronic, optical and transport properties of these semiconductor nanostructures. The book will lead the reader through comprehensive explanations and mathematical derivations to the point where they can design semiconductor nanostructures with the required electronic and optical properties for exploitation in these technologies. This fully revised and updated 4th edition features new sections that incorporate modern techniques and extensive new material including: Properties of non-parabolic energy bands Matrix solutions of the Poisson and Schrödinger equations Critical thickness of strained materials Carrier scattering by interface roughness, alloy disorder and impurities Density matrix transport modelling Thermal modelling Written by well-known authors in the field of semiconductor nanostructures and quantum optoelectronics, this user-friendly guide is presented in a lucid style with easy to follow steps, illustrative examples and questions and computational problems in each chapter to help the reader build solid foundations of understanding to a level where they can initiate their own theoretical investigations. Suitable for postgraduate students of semiconductor and condensed matter physics, the book is essential to all those researching in academic and industrial laboratories worldwide. Instructors can contact the authors directly ([email protected] / [email protected]) for Solutions to the problems.