Quantum Theory of Real Materials

Quantum Theory of Real Materials
Author: James R. Chelikowsky,Steven G. Louie
Publsiher: Springer Science & Business Media
Total Pages: 580
Release: 1996-02-29
Genre: Science
ISBN: 0792396669

Download Quantum Theory of Real Materials Book in PDF, Epub and Kindle

A Festschrift in honor of Professor Marvin L. Cohen This volume is a Festschrift in honor of Professor Marvin L. Cohen. The articles, contributed by leading researchers in condensed matter physics, high-light recent advances in the use of quantum theory to explain and predict properties of real materials. The invention of quantum mechanics in the 1920's provided detailed descriptions of the electronic structure of atoms. However, a similar understanding of solids has been achieved only in the past 30 years, owing to the complex electron-ion and electron electron interactions in these systems. Professor Cohen is a central figure in this achievement. His development of the pseudopotential and total energy methods provided an alternate route using computers for the exploration of solids and new materials even when they have not yet been synthesized. Professor Cohen's contributions to materials theory have been both fundamental and encompassing. The corpus of his work consists of over 500 papers and a textbook. His band structures for semiconductors are used worldwide by researchers in solid state physics and chemistry and by device engineers. Professor Cohen's own use of his theories has resulted in the determination of the electronic structure, optical properties, structural and vibrational properties, and superconducting properties of numerous condensed matter systems including semiconductors, metals, surfaces, interfaces, defects in solids, clusters, and novel materials such as the fullerides and nanotubes.

Quantum Theory of Materials

Quantum Theory of Materials
Author: Efthimios Kaxiras,John D. Joannopoulos
Publsiher: Cambridge University Press
Total Pages: 679
Release: 2019-06-06
Genre: Science
ISBN: 9780521117111

Download Quantum Theory of Materials Book in PDF, Epub and Kindle

An accessible overview of the concepts and tools essential to the physics of materials, with applications, exercises, and color figures.

An Introduction to Quantum Physics

An Introduction to Quantum Physics
Author: Stefanos Trachanas
Publsiher: John Wiley & Sons
Total Pages: 564
Release: 2018-02-20
Genre: Science
ISBN: 9783527412471

Download An Introduction to Quantum Physics Book in PDF, Epub and Kindle

This modern textbook offers an introduction to Quantum Mechanics as a theory that underlies the world around us, from atoms and molecules to materials, lasers, and other applications. The main features of the book are: Emphasis on the key principles with minimal mathematical formalism Demystifying discussions of the basic features of quantum systems, using dimensional analysis and order-of-magnitude estimates to develop intuition Comprehensive overview of the key concepts of quantum chemistry and the electronic structure of solids Extensive discussion of the basic processes and applications of light-matter interactions Online supplement with advanced theory, multiple-choice quizzes, etc.

Advanced Quantum Mechanics

Advanced Quantum Mechanics
Author: RAINER DICK
Publsiher: Springer
Total Pages: 692
Release: 2016-07-01
Genre: Science
ISBN: 9783319256757

Download Advanced Quantum Mechanics Book in PDF, Epub and Kindle

In this updated and expanded second edition of a well-received and invaluable textbook, Prof. Dick emphasizes the importance of advanced quantum mechanics for materials science and all experimental techniques which employ photon absorption, emission, or scattering. Important aspects of introductory quantum mechanics are covered in the first seven chapters to make the subject self-contained and accessible for a wide audience. Advanced Quantum Mechanics, Materials and Photons can therefore be used for advanced undergraduate courses and introductory graduate courses which are targeted towards students with diverse academic backgrounds from the Natural Sciences or Engineering. To enhance this inclusive aspect of making the subject as accessible as possible Appendices A and B also provide introductions to Lagrangian mechanics and the covariant formulation of electrodynamics. This second edition includes an additional 62 new problems as well as expanded sections on relativistic quantum fields and applications of quantum electrodynamics. Other special features include an introduction to Lagrangian field theory and an integrated discussion of transition amplitudes with discrete or continuous initial or final states. Once students have acquired an understanding of basic quantum mechanics and classical field theory, canonical field quantization is easy. Furthermore, the integrated discussion of transition amplitudes naturally leads to the notions of transition probabilities, decay rates, absorption cross sections and scattering cross sections, which are important for all experimental techniques that use photon probes.

Introduction to Quantum Mechanics

Introduction to Quantum Mechanics
Author: Sy M. Blinder
Publsiher: Elsevier
Total Pages: 352
Release: 2012-12-02
Genre: Science
ISBN: 9780080489285

Download Introduction to Quantum Mechanics Book in PDF, Epub and Kindle

Introduction to Quantum Mechanics provides a lucid, up-to-date introduction to the principles of quantum mechanics at the level of undergraduates and first-year graduate students in chemistry, materials science, biology and related fields. It shows how the fundamental concepts of quantum theory arose from classic experiments in physics and chemistry, and presents the quantum-mechanical foundations of modern techniques including molecular spectroscopy, lasers and NMR. Blinder also discusses recent conceptual developments in quantum theory, including Schrödinger's Cat, the Einstein-Podolsky-Rosen experiment, Bell's theorem and quantum computing. Clearly presents the basics of quantum mechanics and modern developments in the field Explains applications to molecular spectroscopy, lasers, NMR, and MRI Introduces new concepts such as Schrödinger's Cat, Bell's Theorem, and quantum computing Includes full-color illustrations, proven pedagogical features, and links to online materials

Applied Quantum Mechanics

Applied Quantum Mechanics
Author: Walter Ashley Harrison
Publsiher: World Scientific
Total Pages: 376
Release: 2000
Genre: Science
ISBN: 9810243758

Download Applied Quantum Mechanics Book in PDF, Epub and Kindle

Quantum mechanics is widely recognized as the basic law which governs all of nature, including all materials and devices. It has always been essential to the understanding of material properties, and as devices become smaller it is also essential for studying their behavior. Nevertheless, only a small fraction of graduate engineers and materials scientists take a course giving a systematic presentation of the subject. The courses for physics students tend to focus on the fundamentals and formal background, rather than on application, and do not fill the need. This invaluable text has been designed to fill the very apparent gap.The book covers those parts of quantum theory which may be necessary for a modern engineer. It focuses on the approximations and concepts which allow estimates of the entire range of properties of nuclei, atoms, molecules, and solids, as well as the behavior of lasers and other quantum-optic devices. It may well prove useful also to graduate students in physics, whose courses on quantum theory tend not to include any of these applications. The material has been the basis of a course taught to graduate engineering students for the past four years at Stanford University.Topics Discussed: Foundations; Simple Systems; Hamiltonian Mechanics; Atoms and Nuclei; Molecules; Crystals; Transitions; Tunneling; Transition Rates; Statistical Mechanics; Transport; Noise; Energy Bands; Electron Dynamics in Solids; Vibrations in Solids; Creation and Annihilation Operators; Phonons; Photons and Lasers; Coherent States; Coulomb Effects; Cooperative Phenomena; Magnetism; Shake-off Excitations; Exercise Problems.

Problem Solving in Quantum Mechanics

Problem Solving in Quantum Mechanics
Author: Marc Cahay,Supriyo Bandyopadhyay
Publsiher: John Wiley & Sons
Total Pages: 372
Release: 2017-05-30
Genre: Science
ISBN: 9781118988756

Download Problem Solving in Quantum Mechanics Book in PDF, Epub and Kindle

This topical and timely textbook is a collection of problems for students, researchers, and practitioners interested in state-of-the-art material and device applications in quantum mechanics. Most problem are relevant either to a new device or a device concept or to current research topics which could spawn new technology. It deals with the practical aspects of the field, presenting a broad range of essential topics currently at the leading edge of technological innovation. Includes discussion on: Properties of Schroedinger Equation Operators Bound States in Nanostructures Current and Energy Flux Densities in Nanostructures Density of States Transfer and Scattering Matrix Formalisms for Modelling Diffusive Quantum Transport Perturbation Theory, Variational Approach and their Applications to Device Problems Electrons in a Magnetic or Electromagnetic Field and Associated Phenomena Time-dependent Perturbation Theory and its Applications Optical Properties of Nanostructures Problems in Quantum Mechanics: For Material Scientists, Applied Physicists and Device Engineers is an ideal companion to engineering, condensed matter physics or materials science curricula. It appeals to future and present engineers, physicists, and materials scientists, as well as professionals in these fields needing more in-depth understanding of nanotechnology and nanoscience.

Quantum Aspects of Life

Quantum Aspects of Life
Author: Derek Abbott,Paul C W Davies,Arun K Pati
Publsiher: World Scientific
Total Pages: 468
Release: 2008-09-12
Genre: Science
ISBN: 9781908978738

Download Quantum Aspects of Life Book in PDF, Epub and Kindle

This book presents the hotly debated question of whether quantum mechanics plays a non-trivial role in biology. In a timely way, it sets out a distinct quantum biology agenda. The burgeoning fields of nanotechnology, biotechnology, quantum technology, and quantum information processing are now strongly converging. The acronym BINS, for Bio-Info-Nano-Systems, has been coined to describe the synergetic interface of these several disciplines. The living cell is an information replicating and processing system that is replete with naturally-evolved nanomachines, which at some level require a quantum mechanical description. As quantum engineering and nanotechnology meet, increasing use will be made of biological structures, or hybrids of biological and fabricated systems, for producing novel devices for information storage and processing and other tasks. An understanding of these systems at a quantum mechanical level will be indispensable. Contents:Foreword (Sir R Penrose)Emergence and Complexity:A Quantum Origin of Life? (P C W Davies)Quantum Mechanics and Emergence (S Lloyd)Quantum Mechanisms in Biology:Quantum Coherence and the Search for the First Replicator (J Al-Khalili & J McFadden)Ultrafast Quantum Dynamics in Photosynthesis (A O Castro, F F Olsen, C F Lee & N F Johnson)Modelling Quantum Decoherence in Biomolecules (J Bothma, J Gilmore & R H McKenzie)The Biological Evidence:Molecular Evolution: A Role for Quantum Mechanics in the Dynamics of Molecular Machines that Read and Write DNA (A Goel)Memory Depends on the Cytoskeleton, but is it Quantum? (A Mershin & D V Nanopoulos)Quantum Metabolism and Allometric Scaling Relations in Biology (L Demetrius)Spectroscopy of the Genetic Code (J D Bashford & P D Jarvis)Towards Understanding the Origin of Genetic Languages (A D Patel)Artificial Quantum Life:Can Arbitrary Quantum Systems Undergo Self-Replication? (A K Pati & S L Braunstein)A Semi-Quantum Version of the Game of Life (A P Flitney & D Abbott)Evolutionary Stability in Quantum Games (A Iqbal & T Cheon)Quantum Transmemetic Intelligence (E W Piotrowski & J S≈adkowski)The Debate:Dreams versus Reality: Plenary Debate Session on Quantum Computing (For Panel: C M Caves, D Lidar, H Brandt, A R Hamilton, Against Panel: D K Ferry, J Gea-Banacloche, S M Bezrukov, L B Kish, Debate Chair: C R Doering, Transcript Editor: D Abbott)Plenary Debate: Quantum Effects in Biology: Trivial or Not? (For Panel: P C W Davies, S Hameroff, A Zeilinger, D Abbott, Against Panel: J Eisert, H M Wiseman, S M Bezrukov, H Frauenfelder, Debate Chair: J Gea-Banacloche, Transcript Editor: D Abbott)Nontrivial Quantum Effects in Biology: A Skeptical Physicist's View (H Wiseman & J Eisert)That's Life! — The Geometry of π Electron Clouds (S Hameroff) Readership: Graduate students and researchers in quantum physics, biophysics, nanosciences, quantum chemistry, mathematical biology and complexity theory, as well as philosophers of science. Keywords:Quantum Biology;Quantum Computation;Quantum Mechanics;Biophysics;Nanotechnology;Quantum Technology;Quantum Information Processing;Bio-Info-Nano-Systems (BINS);Emergence;Complexity;Complex Systems;Cellular Automata;Game Theory;Biomolecules;Photosynthesis;DNA;Genetic Code;DecoherenceKey Features:Is structured in a debate style, where contributors argue opposing positionsBrings together some of the finest minds and latest developments in the fieldIs entirely unique and there are no competing titles